# G. Buchalla - LMU Munich

## Contact Details

NameG. Buchalla |
||

AffiliationLMU Munich |
||

CityMünchen |
||

CountryGermany |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (50) High Energy Physics - Experiment (5) |

## Publications Authored By G. Buchalla

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We consider the Standard Model extended by a heavy scalar singlet in different regions of parameter space and construct the appropriate low-energy effective field theories up to first nontrivial order. This top-down exercise in effective field theory is meant primarily to illustrate with a simple example the systematics of the linear and nonlinear electroweak effective Lagrangians and to clarify the relation between them. We discuss power-counting aspects and the transition between both effective theories on the basis of the model, confirming in all cases the rules and procedures derived in previous works from a bottom-up approach. Read More

In a recent paper [1] a master formula has been presented for the power counting of a general effective field theory. We first show that this master formula follows immediately from the concept of chiral dimensions (loop counting), together with standard dimensional analysis. Subsequently, [1] has disputed the relevance of chiral counting for chiral Lagrangians, and in particular for the electroweak chiral Lagrangian including a light Higgs boson. Read More

In a recent paper we showed that the electroweak chiral Lagrangian at leading order is equivalent to the conventional $\kappa$ formalism used by ATLAS and CMS to test Higgs anomalous couplings. Here we apply this fact to fit the latest Higgs data. The new aspect of our analysis is a systematic interpretation of the fit parameters within an EFT. Read More

We propose a parametrization of anomalous Higgs-boson couplings that is both systematic and practical. It is based on the electroweak chiral Lagrangian, including a light Higgs boson, as the effective field theory (EFT) at the electroweak scale $v$. This is the appropriate framework for the case of sizeable deviations in the Higgs couplings of order $10\%$ from the Standard Model, considered to be parametrically larger than new-physics effects in the sector of electroweak gauge interactions. Read More

We consider the electroweak chiral Lagrangian, including a light scalar boson, in the limit of small $\xi=v^2/f^2$. Here $v$ is the electroweak scale and $f$ is the corresponding scale of the new strong dynamics. We show how the conventional SILH Lagrangian, defined as the effective theory of a strongly-interacting light Higgs (SILH) to first order in $\xi$, can be obtained as a limiting case of the complete electroweak chiral Lagrangian. Read More

We discuss the systematics of power counting in general effective field theories, focussing on those that are nonrenormalizable at leading order. As an illuminating example we consider chiral perturbation theory gauged under the electromagnetic $U(1)$ symmetry. This theory describes the low-energy interactions of the octet of pseudo-Goldstone bosons in QCD with photons and has been discussed extensively in the literature. Read More

We compute the fully differential rate for the Higgs-boson decay $h\to Z\ell^+\ell^-$, with $Z\to\ell^{'+}\ell^{'-}$. For these processes we assume the most general matrix elements within an effective Lagrangian framework. The electroweak chiral Lagrangian we employ assumes minimal particle content and Standard Model gauge symmetries, but is otherwise completely general. Read More

We consider the Standard Model, including a light scalar boson $h$, as an effective theory at the weak scale $v=246\,{\rm GeV}$ of some unknown dynamics of electroweak symmetry breaking. This dynamics may be strong, with $h$ emerging as a pseudo-Goldstone boson. The symmetry breaking scale $\Lambda$ is taken to be at $4\pi v$ or above. Read More

We analyze new physics contributions to $e^+e^-\to W^+W^-$ at the TeV energy scale, employing an effective field theory framework. A complete basis of next-to-leading order operators in the standard model effective Lagrangian is used, both for the nonlinear and the linear realization of the electroweak sector. The elimination of redundant operators via equations-of-motion constraints is discussed in detail. Read More

We consider the Standard Model as an effective theory at the weak scale $v$ of a generic new strong interaction that dynamically breaks electroweak symmetry at the energy scale $\Lambda\sim $ (few) TeV. Assuming only the minimal field content with the Standard Model fermions and gauge bosons, but without a light Higgs particle, we construct the complete Lagrangian through next-to-leading order, that is, including terms of order $v^2/\Lambda^2$. The systematics behind this expansion is clarified. Read More

We develop a systematic framework for exclusive rare B decays of the type B -> K(*)l+l- at large dilepton invariant mass q^2. It is based on an operator product expansion (OPE) for the required matrix elements of the nonleptonic weak Hamiltonian in this kinematic regime. Our treatment differs from previous work by a simplified operator basis, the explicit calculation of matrix elements of subleading operators, and by a quantitative estimate of duality violation. Read More

We discuss how the combined analysis of $B\to K\nu\bar\nu$ and $B\to Kl^+l^-$ can provide us with new physics tests practically free of form factor uncertainties. Residual theory errors are at the level of several percent. This study underlines the excellent motivation for measuring these modes at a Super Flavour Factory, or, in the case of $B\to Kl^+l^-$, also at a hadron collider. Read More

We show that a combined analysis of $B\to K\nu\bar\nu$ and $B\to Kl^+l^-$ allows for new physics tests practically free of form factor uncertainties. Residual theory errors are at the level of several percent. Our study underlines the excellent motivation for measuring these modes at a Super Flavour Factory. Read More

The integrated branching fraction of the process $B\to X_s l^+l^-$ is dominated by resonance background from narrow charmonium states, such as $B\to X_s\psi\to X_s l^+l^-$, which exceeds the non-resonant charm-loop contribution by two orders of magnitude. The origin of this fact is discussed in view of the general expectation of quark-hadron duality. The situation in $B\to X_s l^+l^-$ is contrasted with charm-penguin amplitudes in two-body hadronic B decays of the type $B\to\pi\pi$, for which it is demonstrated that resonance effects and the potentially non-perturbative $c\bar c$ threshold region do not invalidate the standard picture of QCD factorization. Read More

We compute the amplitudes for the two-body decay of $B$ mesons into longitudinally polarized light vector mesons at next-to-leading order in QCD. We give the explicit expressions in QCD factorization for all 34 transitions of a heavy-light $B$ meson into a pair of longitudinal vector mesons $\rho$, $\omega$, $\phi$, $K^*$ within the Standard Model. Decay rates and CP asymmetries are discussed in detail and compared with available data. Read More

A short overview of theoretical methods for B physics at hadron colliders is presented. The main emphasis is on the theory of two-body hadronic B decays, which provide a rich field of investigation in particular for the Tevatron and the LHC. The subject holds both interesting theoretical challenges as well as many opportunities for flavor studies and new physics tests. Read More

**Authors:**G. Buchalla, T. K. Komatsubara, F. Muheim, L. Silvestrini, M. Artuso, D. M. Asner, P. Ball, E. Baracchini, G. Bell, M. Beneke, J. Berryhill, A. Bevan, I. I. Bigi, M. Blanke, Ch. Bobeth, M. Bona, F. Borzumati, T. Browder, T. Buanes, O. Buchmuller, A. J. Buras, S. Burdin, D. G. Cassel, R. Cavanaugh, M. Ciuchini, P. Colangelo, G. Crosetti, A. Dedes, F. De Fazio, S. Descotes-Genon, J. Dickens, Z. Dolezal, S. Durr, U. Egede, C. Eggel, G. Eigen, S. Fajfer, Th. Feldmann, R. Ferrandes, P. Gambino, T. Gershon, V. Gibson, M. Giorgi, V. V. Gligorov, B. Golob, A. Golutvin, Y. Grossman, D. Guadagnoli, U. Haisch, M. Hazumi, S. Heinemeyer, G. Hiller, D. Hitlin, T. Huber, T. Hurth, T. Iijima, A. Ishikawa, G. Isidori, S. Jager, A. Khodjamirian, P. Koppenburg, T. Lagouri, U. Langenegger, C. Lazzeroni, A. Lenz, V. Lubicz, W. Lucha, H. Mahlke, D. Melikhov, F. Mescia, M. Misiak, M. Nakao, J. Napolitano, N. Nikitin, U. Nierste, K. Oide, Y. Okada, P. Paradisi, F. Parodi, M. Patel, A. A. Petrov, T. N. Pham, M. Pierini, S. Playfer, G. Polesello, A. Policicchio, A. Poschenrieder, P. Raimondi, S. Recksiegel, P. Reznicek, A. Robert, S. Robertson, J. L. Rosner, G. Ruggiero, A. Sarti, O. Schneider, F. Schwab, S. Simula, S. Sivoklokov, P. Slavich, C. Smith, M. Smizanska, A. Soni, T. Speer, P. Spradlin, M. Spranger, A. Starodumov, B. Stech, A. Stocchi, S. Stone, C. Tarantino, F. Teubert, S. T'Jampens, K. Toms, K. Trabelsi, S. Trine, S. Uhlig, V. Vagnoni, J. J. van Hunen, G. Weiglein, A. Weiler, G. Wilkinson, Y. Xie, M. Yamauchi, G. Zhu, J. Zupan, R. Zwicky

With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most probably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measurements and computations in the realm of flavour physics are expected to play a key role in constraining the unknown parameters of the Lagrangian of any NP model emerging from direct searches at the LHC. Read More

New CP violating physics in $b\to s$ transitions will modify the CP asymmetries in B decays into final CP eigenstates ($\phi K_S$, $\eta^\prime K_S$, $\pi^0 K_S$, $\omega K_S$, $\rho^0 K_S$ and $\eta K_S$) from their Standard Model values. In a model independent analysis, the pattern of deviations can be used to probe which Wilson coefficients get a significant contribution from the new physics. We demonstrate this idea using several well-motivated models of new physics, and apply it to current data. Read More

**Affiliations:**

^{1}RWTH Aachen,

^{2}LMU Munich,

^{3}Cornell U. & IAS, Princeton,

^{4}U. Southampton

We show that the factorization formula for non-leptonic B decays to two light flavor non-singlet mesons derived by Bauer et al. in the context of soft-collinear effective theory is equivalent to the corresponding formula in the QCD factorization approach. The apparent numerical differences in the analysis of B->pi+pi data performed by these authors, as compared to previous QCD factorization analyses, can largely be attributed to the neglect of known perturbative and power corrections. Read More

We discuss the exclusive radiative decays $B\to K^{*}\gamma$, $B \to\rho\gamma$, and $B\to\omega\gamma$ in QCD factorization within the Standard Model. The analysis is based on the heavy-quark limit of QCD. Our results for these decays are complete to next-to-leading order in QCD and to leading order in the heavy-quark limit. Read More

**Affiliations:**

^{1}LMU Munich,

^{2}LMU Munich

**Category:**High Energy Physics - Phenomenology

We analyze the extraction of weak phases from CP violation in $B\to\pi^+\pi^-$ decays. We propose to determine the unitarity triangle $(\bar\rho,\bar\eta)$ by combining the information on mixing induced CP violation in $B\to\pi^+\pi^-$, $S$, with the precision observable $\sin 2\beta$ obtained from the CP asymmetry in $B\to\psi K_S$. It is then possible to write down exact analytical expressions for $\bar\rho$ and $\bar\eta$ as simple functions of the observables $S$ and $\sin 2\beta$, and of the penguin parameters $r$ and $\phi$. Read More

We review recent developments in QCD pertaining to its application to weak decays of heavy hadrons. We concentrate on exclusive rare and nonleptonic B-meson decays, discussing both the theoretical framework and phenomenological issues of current interest. Read More

We derive model independent lower bounds on the CKM parameters (1-rhobar) and etabar as functions of the mixing-induced CP asymmetry S in B-> pi+ pi- and sin(2 beta) from B->psi K_S. The bounds do not depend on specific results of theoretical calculations for the penguin contribution to B-> pi+ pi-. They require only the very conservative condition that a hadronic phase, which vanishes in the heavy-quark limit, does not exceed 90 degrees in magnitude. Read More

We present a new analysis of the rare decay K_L -> pi0 e+ e- taking into account important experimental progress that has recently been achieved in measuring K_L -> pi0 gamma gamma and K_S -> pi0 e+ e-. This includes a brief review of the direct CP-violating component, a calculation of the indirect CP-violating contribution, which is now possible after the measurement of K_S -> pi0 e+ e-, and a re-analysis of the CP conserving part. The latter is shown to be negligible, based on experimental input from K_L -> pi0 gamma gamma, a more general treatment of the form factor entering the dispersive contribution, and on a comparison with the CP violating rate, which can now be estimated reliably. Read More

**Affiliations:**

^{1}RWTH Aachen,

^{2}LMU Munich,

^{3}Uni Regensburg,

^{4}Fermilab

**Category:**High Energy Physics - Phenomenology

We compute next-to-leading order QCD corrections to the CP asymmetry a_{fs} = Im(Gamma_{12}/M_{12}) in flavour-specific B_{d,s} decays such as B_d->X l nu or B_s->D^-_s pi^+. The corrections reduce the uncertainties associated with the choice of the renormalization scheme for the quark masses significantly. In the Standard Model we predict a^d_{fs} = -(5. Read More

**Authors:**M. Battaglia, A. J. Buras, P. Gambino, A. Stocchi, D. Abbaneo, A. Ali, P. Amaral, V. Andreev, M. Artuso, E. Barberio, C. Bauer, D. Becirevic, M. Beneke, I. Bigi, C. Bozzi, T. Brandt, G. Buchalla, M. Calvi, D. Cassel, V. Cirigliano, M. Ciuchini, G. Colangelo, A. Dighe, G. Dubois-Felsmann, G. Eigen, K. Ecklund, P. Faccioli, R. Fleischer, J. Flynn, R. Forty, E. Franco, P. Gagnon, R. Gupta, S. Hashimoto, R. Hawkings, D. Hitlin, A. Hoang, A. Hocker, T. Hurth, G. Isidori

**Category:**High Energy Physics - Phenomenology

This report contains the results of the Workshop on the CKM Unitarity Triangle, held at CERN on 13-16 February 2002 to study the determination of the CKM matrix from the available data of K, D, and B physics. This is a coherent document with chapters covering the determination of CKM elements from tree level decays and K and B meson mixing and the global fits of the unitarity triangle parameters. The impact of future measurements is also discussed. Read More

**Affiliations:**

^{1}LMU Munich

**Category:**High Energy Physics - Phenomenology

We review selected topics in the field of nonleptonic and rare B meson decays. We concentrate in particular on exclusive channels, discussing recent developments based on the concepts of factorization in QCD and the heavy-quark limit. Read More

**Affiliations:**

^{1}LMU Munich

**Category:**High Energy Physics - Phenomenology

We discuss a model-independent framework for the analysis of the radiative B-meson decays B -> K* gamma and B -> rho gamma based on the heavy-quark limit of QCD. We present a factorization formula for the treatment of B -> V gamma matrix elements involving charm (or up-quark) loops, which contribute at leading power in Lambda_QCD/m_B to the decay amplitude. Annihilation topologies are power suppressed, but still calculable in some cases. Read More

We analyze the double radiative B-meson decays B_s -> gamma gamma and B_d -> gamma gamma in QCD factorization based on the heavy-quark limit m_b >> Lambda_QCD. We systematically discuss the various contributions to these exclusive processes. The dominant effect arises from the magnetic-moment type transition b -> s(d) gamma where an additional photon is emitted from the light quark (one-particle reducible diagram). Read More

**Affiliations:**

^{1}RWTH Aachen,

^{2}CERN,

^{3}Berne U.,

^{4}Univ. Regensburg,

^{5}Fermilab

**Category:**High Energy Physics - Phenomenology

We compute perturbative QCD corrections to the lifetime splitting between the charged and neutral $B$ meson in the framework of the heavy quark expansion. These next-to-leading logarithmic corrections are necessary for a meaningful use of hadronic matrix elements of local operators from lattice gauge theory. We find the uncertainties associated with the choices of renormalization scale and scheme significantly reduced compared to the leading-order result. Read More

These lectures describe the most important theoretical methods in b-physics. We discuss the formalism of effective weak Hamiltonians, heavy quark effective theory, the heavy quark expansion for inclusive decays of b-hadrons and, finally, the more recent ideas of QCD factorization for exclusive nonleptonic B decays. While the main emphasis is put on introducing the basic theoretical concepts, some key applications in phenomenology are also presented for illustration. Read More

**Affiliations:**

^{1}CERN

**Category:**High Energy Physics - Phenomenology

The theory of rare $K$ decays is reviewed, emphasizing short-distance processes and the prospects to probe the physics of flavour. A brief overview of the subject is presented, along with a more detailed discussion of the theory of $K\to\pi\nu\bar\nu$ decays. Read More

We study opportunities for future high-precision experiments in kaon physics using a high-intensity proton driver, which could be part of the front-end of a muon storage ring complex. We discuss in particular the rare decays $K_L\to\pi^0\nu\bar\nu$, $K^+\to\pi^+\nu\bar\nu$, $K_L\to\pi^0e^+e^-$, and lepton-flavour violating modes such as $K_L\to\mu e$ and $K\to\pi\mu e$. The outstanding physics potential and long-term interest of these modes is emphasized. Read More

We provide a model-independent framework for the analysis of the radiative B-meson decays B -> K* gamma and B -> rho gamma. In particular, we give a systematic discussion of the various contributions to these exclusive processes based on the heavy-quark limit of QCD. We propose a novel factorization formula for the consistent treatment of B -> V gamma matrix elements involving charm (or up-quark) loops, which contribute at leading power in Lambda_QCD/m_B to the decay amplitude. Read More

**Affiliations:**

^{1}RWTH Aachen,

^{2}CERN,

^{3}Cornell U.,

^{4}Southampton U.

**Category:**High Energy Physics - Phenomenology

In the heavy-quark limit, the hadronic matrix elements entering nonleptonic $B$-meson decays into two light mesons can be calculated from first principles including ``nonfactorizable'' strong-interaction corrections. The $B\to\pi K,\pi\pi$ decay amplitudes are computed including electroweak penguin contributions, SU(3) violation in the light-cone distribution amplitudes, and an estimate of power corrections from chirally-enhanced terms and annihilation graphs. The results are then used to reduce the theoretical uncertainties in determinations of the weak phases $\gamma$ and $\alpha$. Read More

**Affiliations:**

^{1}CERN

**Category:**High Energy Physics - Phenomenology

We introduce and discuss basic topics in the theory of kaons and charmed particles. In the first part, theoretical methods in weak decays such as operator product expansion, renormalization group and the construction of effective Hamiltonians are presented, along with an elementary account of chiral perturbation theory. The second part describes the phenomenology of the neutral kaon system, CP violation, $\varepsilon$ and $\varepsilon'/\varepsilon$, rare kaon decays ($K\to\pi\nu\bar\nu$, $K_L\to\pi^0 e^+e^-$, $K_L\to\mu^+\mu^-$), and some examples of flavour physics in the charm sector. Read More

**Affiliations:**

^{1}Aachen,

^{2}CERN,

^{3}Cornell,

^{4}Southampton

**Category:**High Energy Physics - Phenomenology

We examine some consequences of the QCD factorization approach to non-leptonic B decays into $\pi K$ and $\pi \pi$ final states, including a set of enhanced power corrections. Among the robust predictions of the approach we find small strong-interaction phases (with one notable exception) and a pattern of CP-averaged branching fractions, which in some cases differ significantly from the current central values reported by the CLEO Collaboration. Read More

**Affiliations:**

^{1}Aachen,

^{2}CERN,

^{3}Cornell,

^{4}Southampton

**Category:**High Energy Physics - Phenomenology

We provide a rigorous basis for factorization for a large class of non-leptonic two-body $B$-meson decays in the heavy-quark limit. The factorization formula incorporates elements of the naive factorization approach and the hard-scattering approach, but allows us to compute systematically radiative (``non-factorizable'') corrections to naive factorization for decays such as $B\to D\pi$ and $B\to \pi \pi$. We discuss the factorization formula for a general final state from a general point of view. Read More

The rare decays $B\to K^{(*)}\ell^+\ell^-$, $B\to K^{(*)}\nu\bar\nu$ and $B_s\to\mu^+\mu^-$ are analyzed in a generic scenario where New Physics effects enter predominantly via $Z$ penguin contributions. We show that this possibility is well motivated on theoretical grounds, as the $\bar sbZ$ vertex is particularly susceptible to non-standard dynamics. In addition, such a framework is also interesting phenomenologically since the $\bar sbZ$ coupling is rather poorly constrained by present data. Read More

**Authors:**P. Ball, R. Fleischer, G. F. Tartarelli, P. Vikas, G. Wilkinson, J. Baines, S. P. Baranov, P. Bartalini, M. Beneke, E. Bouhova, G. Buchalla, I. Caprini, F. Charles, J. Charles, Y. Coadou, P. Colangelo, P. Colrain, J. Damet, F. De Fazio, A. Dighe, H. Dijkstra, P. Eerola, N. Ellis, B. Epp, S. Gadomski, P. Galumian, I. Gavrilenko, S. George, V. M. Ghete, V. Gibson, L. Guy, Y. Hasegawa, P. Iengo, A. Jacholkowska, R. Jones, A. Khodjamirian, E. Kneringer, P. Koppenburg, H. Korsmo, N. Labanca, L. Lellouch, M. Lehto, Y. Lemoigne, J. Libby, J. Matias, S. Mele, M. Misiak, A. M. Nairz, T. Nakada, A. Nikitenko, N. Nikitin, A. Nisati, F. Palla, E. Polycarpo, J. Rademacker, F. Rizatdinova, S. Robins, D. Rousseau, W. Ruckstuhl, M. A. Sanchis, O. Schneider, M. Shapiro, C. Shepherd-Themistocleous, P. Sherwood, L. Smirnova, M. Smizanska, A. Starodumov, N. Stepanov, Z. Xie, N. Zaitsev

We review the prospects for B decay studies at the LHC. Read More

**Affiliations:**

^{1}CERN

**Category:**High Energy Physics - Phenomenology

We review the status of rare kaon decays, concentrating on modes with sensitivity to short-distance flavour physics. Read More

**Affiliations:**

^{1}CERN

**Category:**High Energy Physics - Phenomenology

We summarize both the study of CP violation with $K$ and $B$ mesons, as well as rare decays of kaons, emphasizing recent developments. The topics discussed include the unitarity triangle, $\epsilon'/\epsilon$, $K\to\pi\nu\bar\nu$ and other rare $K$ decays, T-odd asymmetries in kaon physics, theoretical aspects of CP violation in B decays, $B\to J/\Psi K_S$, $B\to\pi\pi$, $B\to\pi K$ and inclusive CP asymmetries. Read More

We show that, in the heavy quark limit, the hadronic matrix elements that enter $B$ meson decays into two light mesons can be computed from first principles, including `non-factorizable' strong interaction corrections, and expressed in terms of form factors and meson light-cone distribution amplitudes. The conventional factorization result follows in the limit when both power corrections in $1/m_b$ and radiative corrections in $\alpha_s$ are neglected. We compute the order-$\alpha_s$ corrections to the decays $B_d\to\pi^+\pi^-$, $B_d\to\pi^0\pi^0$ and $B^+\to\pi^+\pi^0$ in the heavy quark limit and briefly discuss the phenomenological implications for the branching ratios, strong phases and CP violation. Read More

**Affiliations:**

^{1}CERN,

^{2}TU Munich

**Category:**High Energy Physics - Phenomenology

We update the Standard Model predictions for the rare decays $K^+\to\pi^+\nu\bar\nu$ and $K_L\to\pi^0\nu\bar\nu$. In view of improved limits on $B_s$--$\bar B_s$ mixing we derive a stringent and theoretically clean Standard Model upper limit on $B(K^+\to\pi^+\nu\bar\nu)$, which is based on the ratio of $B_d$--$\bar B_d$ to $B_s$--$\bar B_s$ mixing, $\Delta M_d/\Delta M_s$, alone. This method avoids the large hadronic uncertainties present in the usual analysis of the CKM matrix. Read More

**Affiliations:**

^{1}CERN

**Category:**High Energy Physics - Phenomenology

The rare decay $B\to X_sl^+l^-$ provides excellent prospects for precision tests of Standard Model flavour dynamics. The process can be computed in perturbation theory with small uncertainty. However, in order to ensure a reliable theoretical prediction, also potentially important effects from non-perturbative QCD have to be controlled with sufficient accuracy. Read More

**Affiliations:**

^{1}CERN,

^{2}CERN,

^{3}Berne U.,

^{4}MPI Munich,

^{5}DESY

**Category:**High Energy Physics - Phenomenology

We compute the QCD corrections to the decay rate difference in the $B_s-\bar B_s$ system, $\Delta\Gamma_{B_s}$, in the next-to-leading logarithmic approximation using the heavy quark expansion approach. Going beyond leading order in QCD is essential to obtain a proper matching of the Wilson coefficients to the matrix elements of local operators from lattice gauge theory. The lifetime difference is reduced considerably at next-to-leading order. Read More

The rare decay $K_L\to\pi^0\nu\bar\nu$ is dominated by direct CP violation and can be computed with extraordinarily high precision. In principle also a CP conserving contribution to this process can arise within the Standard Model. We clarify the structure of the CP conserving mechanism, analyzing both its short-distance and long-distance components. Read More

**Affiliations:**

^{1}CERN,

^{2}INFN Frascati

**Category:**High Energy Physics - Phenomenology

We reconsider the calculation of ${\cal O}(\Lambda^2_{QCD}/m^2_b)$ nonperturbative corrections to $\bar B\to X_sl^+l^-$ decay. Our analysis confirms the results of Ali et al. for the dilepton invariant mass spectrum, which were in disagreement with an earlier publication, and for the lepton forward-backward asymmetry. Read More

**Affiliations:**

^{1}SLAC

**Category:**High Energy Physics - Phenomenology

We review basic aspects of the phenomenology of CP violation in the decays of $K$ and $B$ mesons. In particular we discuss the commonly used classification of CP violation -- CP violation in the mass matrix, in the interference of mixing with decay, and in the decay amplitude itself -- and the related notions of direct and indirect CP violation. These concepts are illustrated with explicit examples. Read More