Franck Petit - REGAL, UPMC

Franck Petit
Are you Franck Petit?

Claim your profile, edit publications, add additional information:

Contact Details

Franck Petit

Pubs By Year

External Links

Pub Categories

Computer Science - Distributed; Parallel; and Cluster Computing (19)
Astrophysics of Galaxies (14)
Computer Science - Multiagent Systems (5)
Computer Science - Robotics (4)
Astrophysics (3)
Computer Science - Computational Complexity (2)
Computer Science - Data Structures and Algorithms (2)
Computer Science - Discrete Mathematics (2)
Nonlinear Sciences - Adaptation and Self-Organizing Systems (1)
Computer Science - Software Engineering (1)
Earth and Planetary Astrophysics (1)
Instrumentation and Methods for Astrophysics (1)
Computer Science - Networking and Internet Architecture (1)

Publications Authored By Franck Petit

We investigate a special case of hereditary property that we refer to as {\em robustness}. A property is {\em robust} in a given graph if it is inherited by all connected spanning subgraphs of this graph. We motivate this definition in different contexts, showing that it plays a central role in highly dynamic networks, although the problem is defined in terms of classical (static) graph theory. Read More

Protoplanetary disks undergo substantial mass-loss by photoevaporation, a mechanism which is crucial to their dynamical evolution. However, the processes regulating the gas energetics have not been well constrained by observations so far. We aim at studying the processes involved in disk photoevaporation when it is driven by far-UV photons. Read More

Context. The combination of wideband receivers and spectrometers currently available in (sub-)millimeter observatories deliver wide- field hyperspectral imaging of the interstellar medium. Tens of spectral lines can be observed over degree wide fields in about fifty hours. Read More

The nature of turbulence in molecular clouds is one of the key parameters that control star formation efficiency: compressive motions, as opposed to solenoidal motions, can trigger the collapse of cores, or mark the expansion of Hii regions. We try to observationally derive the fractions of momentum density ($\rho v$) contained in the solenoidal and compressive modes of turbulence in the Orion B molecular cloud and relate these fractions to the star formation efficiency in the cloud. The implementation of a statistical method developed by Brunt & Federrath (2014), applied to a $^{13}$CO(J=1-0) datacube obtained with the IRAM-30m telescope, allows us to retrieve 3-dimensional quantities from the projected quantities provided by the observations, yielding an estimate of the compressive versus solenoidal ratio in various regions of the cloud. Read More

We consider systems made of autonomous mobile robots evolving in highly dynamic discrete environment i.e., graphs where edges may appear and disappear unpredictably without any recurrence, stability, nor periodicity assumption. Read More

In this paper we study the task of approach of two mobile agents having the same limited range of vision and moving asynchronously in the plane. This task consists in getting them in finite time within each other's range of vision. The agents execute the same deterministic algorithm and are assumed to have a compass showing the cardinal directions as well as a unit measure. Read More

We aim to develop the Orion B Giant Molecular Cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. We use the wide-band receiver at the IRAM-30m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26" resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Read More

We present Herschel SPIRE Fourier Transform Spectrometer (FTS) observations of N159W, an active star-forming region in the Large Magellanic Cloud (LMC). In our observations, a number of far-infrared cooling lines including CO(4-3) to CO(12-11), [CI] 609 and 370 micron, and [NII] 205 micron are clearly detected. With an aim of investigating the physical conditions and excitation processes of molecular gas, we first construct CO spectral line energy distributions (SLEDs) on 10 pc scales by combining the FTS CO transitions with ground-based low-J CO data and analyze the observed CO SLEDs using non-LTE radiative transfer models. Read More

Context: Fast surface conversion between ortho- and para-H2 has been observed in laboratory studies, and this mechanism has been proposed to play a role in the control of the ortho-para ratio in the interstellar medium. Observations of rotational lines of H2 in Photo-Dissociation Regions (PDRs) have indeed found significantly lower ortho-para ratios than expected at equilibrium. The mechanisms controlling the balance of the ortho-para ratio in the interstellar medium thus remain incompletely understood, while this ratio can affect the thermodynamical properties of the gas (equation of state, cooling function). Read More

We apply the Sternberg et al. (2014) theoretical model to analyze HI and H2 observations in the Perseus molecular cloud. We constrain the physical properties of the HI shielding envelopes and the nature of the HI-to-H2 transitions. Read More

The H3+ molecule has been detected in many lines of sight within the central molecular zone (CMZ) with exceptionally large column densities and unusual excitation properties compared to diffuse local clouds. The detection of the (3,3) metastable level has been suggested to be the signature of warm and diffuse gas in the CMZ. We use the Meudon PDR code to re-examine the relationship between the column density of H3+ and the cosmic-ray ionization rate, $\zeta$, up to large values of $\zeta$. Read More

This document discusses the definition of the Parameter Description Language (PDL). In this language parameters are described in a rigorous data model. With no loss of generality, we will represent this data model using XML. Read More

We use the Sternberg et al. (2014) theory for interstellar atomic to molecular (HI-to-H$_2$) conversion to analyze HI-to-H$_2$ transitions in five (low-mass) star-forming and dark regions in the Perseus molecular cloud, B1, B1E, B5, IC348, and NGC1333. The observed HI mass surface densities of 6. Read More

In its classical form, a consistent replicated service requires all replicas to witness the same evolution of the service state. Assuming a message-passing environment with a majority of correct processes, the necessary and sufficient information about failures for implementing a general state machine replication scheme ensuring consistency is captured by the {\Omega} failure detector. This paper shows that in such a message-passing environment, {\Omega} is also the weakest failure detector to implement an eventually consistent replicated service, where replicas are expected to agree on the evolution of the service state only after some (a priori unknown) time. Read More

We address the problem of computing a Minimal Dominating Set in highly dynamic distributed systems. We assume weak connectivity, i.e. Read More

We address highly dynamic distributed systems modeled by time-varying graphs (TVGs). We interest in proof of impossibility results that often use informal arguments about convergence. First, we provide a distance among TVGs to define correctly the convergence of TVG sequences. Read More

The $\mathrm{H}_2$ formation on grains is known to be sensitive to dust temperature, which is also known to fluctuate for small grain sizes due to photon absorption. We aim at exploring the consequences of simultaneous fluctuations of the dust temperature and the adsorbed H-atom population on the $\mathrm{H}_2$ formation rate under the full range of astrophysically relevant UV intensities and gas conditions. The master equation approach is generalized to coupled fluctuations in both the grain's temperature and its surface population and solved numerically. Read More

The interstellar medium is known to be chemically complex. Organic molecules with up to 11 atoms have been detected in the interstellar medium, and are believed to be formed on the ices around dust grains. The ices can be released into the gas-phase either through thermal desorption, when a newly formed star heats the medium around it and completely evaporates the ices; or through non-thermal desorption mechanisms, such as photodesorption, when a single far-UV photon releases only a few molecules from the ices. Read More

We present new analytic theory and radiative transfer computations for the atomic to molecular (HI-to-H2) transitions, and the build-up of atomic-hydrogen (HI) gas columns, in optically thick interstellar clouds, irradiated by far-ultraviolet photodissociating radiation fields. We derive analytic expressions for the total HI column densities for (1D) planar slabs, for beamed or isotropic radiation fields, from the weak- to strong-field limits, for gradual or sharp atomic to molecular transitions, and for arbitrary metallicity. Our expressions may be used to evaluate the HI column densities as functions of the radiation field intensity and the H2-dust-limited dissociation flux, the hydrogen gas density, and the metallicity-dependent H2 formation rate-coefficient and far-UV dust-grain absorption cross-section. Read More

Containment-based trees encompass various handy structures such as B+-trees, R-trees and M-trees. They are widely used to build data indexes, range-queryable overlays, publish/subscribe systems both in centralized and distributed contexts. In addition to their versatility, their balanced shape ensures an overall satisfactory performance. Read More

Ability to find and get services is a key requirement in the development of large-scale distributed sys- tems. We consider dynamic and unstable environments, namely Peer-to-Peer (P2P) systems. In previous work, we designed a service discovery solution called Distributed Lexicographic Placement Table (DLPT), based on a hierar- chical overlay structure. Read More

Our main purpose is to estimate the effect of assuming uniform density on the line-of-sight in PDR chemistry models, compared to a more realistic distribution for which total gas densities may well vary by several orders of magnitude. A secondary goal of this paper is to estimate the amount of molecular hydrogen which is not properly traced by the CO (J = 1 -> 0) line, the so-called "dark molecular gas". We use results from a magnetohydrodynamical (MHD) simulation as a model for the density structures found in a turbulent diffuse ISM with no star-formation activity. Read More

The exploration problem in the discrete universe, using identical oblivious asynchronous robots without direct communication, has been well investigated. These robots have sensors that allow them to see their environment and move accordingly. However, the previous work on this problem assume that robots have an unlimited visibility, that is, they can see the position of all the other robots. Read More

We address the Leader Election (LE) problem in networks of anonymous sensors sharing no kind of common coordinate system. Leader Election is a fundamental symmetry breaking problem in distributed computing. Its goal is to assign value 1 (leader) to one of the entities and value 0 (non-leader) to all others. Read More

H2 formation remains a major issue for the understanding of interstellar physics. We investigate H2 formation in the interstellar medium at the light of the most recent experimental and theoretical data. We implemented detailed H2 formation mechanisms on grains surface in the Meudon PDR code : i) Langmuir-Hinshelwood mechanism taking into account the contribution of the different sizes of dust grains in the diffusion processes and ii) the Eley-Rideal mechanism. Read More

Affiliations: 1JHU, 2Paris-Meudon, 3UMass, 4Caltech, 5ETH Zurich, 6MPIfETP, 7Chalmers, 8LERMA, 9LERMA, 10JPL, 11JPL, 12JHU, 13Paris-Meudon, 14Paris-Meudon, 15Chalmers, 16CfA, 17MPIfR, 18Caltech, 19Groningen, 20Caltech, 21Stockholm, 22STScI, 23Groningen, 24UMd

Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared (HIFI), we have observed para-chloronium (H2Cl+) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along the sight-lines to the bright submillimeter continuum sources Sgr A (+50 km/s cloud) and W31C. Both the para-H2-35Cl+ and para-H2-37Cl+ isotopologues were detected, through observations of their 1(11)-0(00) transitions at rest frequencies of 485. Read More

In this paper, we consider the message forwarding problem that consists in managing the network resources that are used to forward messages. Previous works on this problem provide solutions that either use a significant number of buffers (that is n buffers per processor, where n is the number of processors in the network) making the solution not scalable or, they reserve all the buffers from the sender to the receiver to forward only one message %while using D buffers (where D refers to the diameter of the network) . The only solution that uses a constant number of buffers per link was introduced in [1]. Read More

We consider a team of {\em autonomous weak robots} that are endowed with visibility sensors and motion actuators. Autonomous means that the team cannot rely on any kind of central coordination mechanism or scheduler. By weak we mean that the robots are devoid of (1) any (observable) IDs allowing to differentiate them (anonymous), (2) means of communication allowing them to communicate directly, and (3) any way to remember any previous observation nor computation performed in any previous step (oblivious). Read More

In this paper, we present the first snap-stabilizing message forwarding protocol that uses a number of buffers per node being inde- pendent of any global parameter, that is 4 buffers per link. The protocol works on a linear chain of nodes, that is possibly an overlay on a large- scale and dynamic system, e.g. Read More

Affiliations: 1LaRIA, MIS, 2LaRIA, LIP, INRIA Rhône-Alpes / LIP Laboratoire de l'Informatique du Parallélisme

In this paper, we investigate the possibility to deterministically solve the gathering problem (GP) with weak robots (anonymous, autonomous, disoriented, deaf and dumb, and oblivious). We introduce strong multiplicity detection as the ability for the robots to detect the exact number of robots located at a given position. We show that with strong multiplicity detection, there exists a deterministic self-stabilizing algorithm solving GP for n robots if, and only if, n is odd. Read More

Affiliations: 1LaRIA, MIS, 2LaRIA, LIP, INRIA Rhône-Alpes / LIP Laboratoire de l'Informatique du Parallélisme, 3LaRIA, LIP, INRIA Rhône-Alpes / LIP Laboratoire de l'Informatique du Parallélisme

We investigate ways for the exchange of information (explicit communication) among deaf and dumb mobile robots scattered in the plane. We introduce the use of movement-signals (analogously to flight signals and bees waggle) as a mean to transfer messages, enabling the use of distributed algorithms among the robots. We propose one-to-one deterministic movement protocols that implement explicit communication. Read More

Leader election and arbitrary pattern formation are funda- mental tasks for a set of autonomous mobile robots. The former consists in distinguishing a unique robot, called the leader. The latter aims in arranging the robots in the plane to form any given pattern. Read More

We consider a team of $k$ identical, oblivious, asynchronous mobile robots that are able to sense (\emph{i.e.}, view) their environment, yet are unable to communicate, and evolve on a constrained path. Read More

We propose a group membership service for dynamic ad hoc networks. It maintains as long as possible the existing groups and ensures that each group diameter is always smaller than a constant, fixed according to the application using the groups. The proposed protocol is self-stabilizing and works in dynamic distributed systems. Read More

We introduce a simple tool called the wavelet (or, r-wavelet) scheme. Wavelets deals with coordination among processes which are at most r hops away of each other. We present a selfstabilizing solution for this scheme. Read More

In this paper, we first formalize the problem to be solved, i.e., the Scatter Problem (SP). Read More

In this paper we prove the conjecture of D\'{e}fago & Konagaya. Furthermore, we describe a deterministic protocol for forming a regular n-gon in finite time. Read More

A Lyndon word is a non-empty word strictly smaller in the lexicographic order than any of its suffixes, except itself and the empty word. In this paper, we show how Lyndon words can be used in the distributed control of a set of n weak mobile robots. By weak, we mean that the robots are anonymous, memoryless, without any common sense of direction, and unable to communicate in an other way than observation. Read More

We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: Read More

We present preliminary results from an ongoing program devoted to a study of small scale structure in the spatial distribution of molecular gas. Our work is based on multi-epoch FUSE and visible observations of HD34078. A detailed comparison of H2, CH and CH+ absorption lines is performed. Read More