Feryal Ozel - Steward Observatory and Department of Astronomy, University of Arizona

Feryal Ozel
Are you Feryal Ozel?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Feryal Ozel
Affiliation
Steward Observatory and Department of Astronomy, University of Arizona
City
Sun City
Country
United States

Pubs By Year

External Links

Pub Categories

 
High Energy Astrophysical Phenomena (44)
 
Nuclear Theory (13)
 
General Relativity and Quantum Cosmology (12)
 
Astrophysics of Galaxies (9)
 
Cosmology and Nongalactic Astrophysics (5)
 
Solar and Stellar Astrophysics (5)
 
Instrumentation and Methods for Astrophysics (3)

Publications Authored By Feryal Ozel

The observable quantities that carry the most information regarding the structures of the images of black holes in the interferometric observations with the Event Horizon Telescope are the closure phases along different baseline triangles. We use long time span, high cadence, GRMHD+radiative transfer models of Sgr A$^*$ to investigate the expected variability of closure phases in such observations. We find that, in general, closure phases along small baseline triangles show little variability, except in the cases when one of the triangle vertices crosses one of a small regions of low visibility amplitude. Read More

2016Jul
Affiliations: 1Einstein Fellow, University of Arizona, 2Columbia, 3Harvard, 4University of Arizona

The merger of a neutron star binary may result in the formation of a rapidly-spinning magnetar. The magnetar can potentially survive for seconds or longer as a supramassive neutron star before collapsing to a black hole if, indeed, it collapses at all. During this process, a fraction of the magnetar's rotational energy of ~10^53 erg is transferred via magnetic spin-down to the surrounding ejecta. Read More

The increasing number and precision of measurements of neutron star masses, radii, and, in the near future, moments of inertia offer the possibility of precisely determining the neutron star equation of state. One way to facilitate the mapping of observables to the equation of state is through a parametrization of the latter. We present here a generic method for optimizing the parametrization of any physically allowed EoS. Read More

The mass function of neutron stars (NSs) contains information about the late evolution of massive stars, the supernova explosion mechanism, and the equation-of-state of cold, nuclear matter beyond the nuclear saturation density. A number of recent NS mass measurements in binary millisecond pulsar (MSP) systems increase the fraction of massive NSs (with $M > 1.8$ M$_{\odot}$) to $\sim 20\% $ of the observed population. Read More

We investigate black hole-host galaxy scaling relations in cosmological simulations with a self-consistent black hole growth and feedback model. The sub-grid accretion model captures the key scalings governing angular momentum transport from galactic scales down to parsec scales, while our kinetic feedback implementation enables the injection of outflows with properties chosen to match observed nuclear outflows. We show that "quasar mode" feedback can have a large impact on the thermal properties of the intergalactic medium and the growth of galaxies and massive black holes for kinetic feedback efficiencies as low as 0. Read More

A precise moment of inertia measurement for PSR J0737-3039A in the double pulsar system is expected within the next five years. We present here a new method of mapping the anticipated measurement of the moment of inertia directly into the neutron star structure. We determine the maximum and minimum values possible for the moment of inertia of a neutron star of a given radius based on physical stability arguments, assuming knowledge of the equation of state only at densities below the nuclear saturation density. Read More

We summarize our current knowledge of neutron star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the last few years, leading to a large number of mass measurements. These discoveries show that the neutron star mass distribution is much wider than previously thought, with 3 known pulsars now firmly in the 1. Read More

We present Chandra ACIS-S sub-array observations of the quiescent neutron star low-mass X-ray binaries X7 and X5 in the globular cluster 47 Tuc. The large reduction in photon pile-up compared to previous deep exposures enables a substantial improvement in the spectroscopic determination of the neutron star radius and mass of these neutron stars. Modeling the thermal emission from the neutron star surface with a non-magnetized hydrogen atmosphere and accounting for numerous sources of uncertainties, we obtain for the neutron star in X7 a radius of $R=11. Read More

Significant X-ray variability and flaring has been observed from Sgr A* but is poorly understood from a theoretical standpoint. We perform GRMHD simulations that take into account a population of non-thermal electrons with energy distributions and injection rates that are motivated by PIC simulations of magnetic reconnection. We explore the effects of including these non-thermal electrons on the predicted broadband variability of Sgr A* and find that X-ray variability is a generic result of localizing non-thermal electrons to highly magnetized regions, where particles are likely to be accelerated via magnetic reconnection. Read More

The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Read More

One of the primary science goals of the next generation of hard X-ray timing instruments is to determine the equation of state of the matter at supranuclear densities inside neutron stars, by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modelling. Read More

The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. Read More

Synthesis imaging of the black hole in the center of the Milky Way, Sgr A*, with the Event Horizon Telescope (EHT) rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence GRMHD simulations of Sgr A*. We employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. Read More

The Neutron-star Interior Composition Explorer (NICER) is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Read More

Data selection and the determination of systematic uncertainties in the spectroscopic measurements of neutron star radii from thermonuclear X-ray bursts have been the subject of numerous recent studies. In one approach, the uncertainties and outliers were determined by a data-driven Bayesian mixture model, whereas in a second approach, data selection was performed by requiring that the observations follow theoretical expectations. We show here that, due to inherent limitations in the data, the theoretically expected trends are not discernible in the majority of X-ray bursts even if they are present. Read More

We present a comprehensive study of spectroscopic radius measurements of twelve neutron stars obtained during thermonuclear bursts or in quiescence. We incorporate, for the first time, a large number of systematic uncertainties in the measurement of the apparent angular sizes, Eddington fluxes, and distances, in the composition of the interstellar medium, and in the flux calibration of X-ray detectors. We also take into account the results of recent theoretical calculations of rotational effects on neutron star radii, of atmospheric effects on surface spectra, and of relativistic corrections to the Eddington critical flux. Read More

Measuring neutron star radii with spectroscopic and timing techniques relies on the combination of multiple observables to break the degeneracies between the mass and radius introduced by general relativistic effects. Here, we explore a previously used frequentist and a newly proposed Bayesian framework to obtain the most likely value and the uncertainty in such a measurement. We find that, for the expected range of masses and radii and for realistic measurement errors, the frequentist approach suffers from biases that are larger than the accuracy in the radius measurement required to distinguish between the different equations of state. Read More

2015May
Affiliations: 1Steward Observatory and Department of Astronomy, University of Arizona, 2Steward Observatory and Department of Astronomy, University of Arizona, 3Steward Observatory and Department of Astronomy, University of Arizona, 4Department of Physics, UC Santa Barbara, 5Steward Observatory and Department of Astronomy, University of Arizona, 6MIT Kavli Institute for Astrophysics and Space Research, 7Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics

We explore the variability properties of long, high cadence GRMHD simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both disk- and jet-dominated simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3mm. Read More

We calculate the effects of spot size on pulse profiles of moderately rotating neutron stars. Specifically, we quantify the bias introduced in radius measurements from the common assumption that spots are infinitesimally small. We find that this assumption is reasonable for spots smaller than 10$^\circ$-18$^\circ$ and leads to errors that are $\le$10% in the radius measurement, depending on the location of the spot and the inclination of the observer. Read More

We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit supernova remnant spectra, (ii) the spatial variations within individual remnants, (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions, and (iv) the model used for the absorption of X-rays in the interstellar medium. Read More

Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. Read More

We model the pulse profiles and the phase resolved spectra of the anomalous X-ray pulsar 1E 1048.1-5937 obtained with XMM-Newton to map its surface temperature distribution during an active and a quiescent epoch. We develop and apply a model that takes into account the relevant physical and geometrical effects on the neutron star surface, magnetosphere, and spacetime. Read More

The half opening angle of a Kerr black-hole shadow is always equal to (5+-0.2)GM/Dc^2, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of a shadow and verifying whether it is within this 4% range constitutes a null hypothesis test of General Relativity. Read More

2014Oct
Affiliations: 1Steward Observatory and Department of Astronomy, University of Arizona, 2Steward Observatory and Department of Astronomy, University of Arizona, 3Steward Observatory and Department of Astronomy, University of Arizona, 4Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 5MIT Kavli Institute for Astrophysics and Space Research

Recent advances in general relativistic magnetohydrodynamic simulations have expanded and improved our understanding of the dynamics of black-hole accretion disks. However, current simulations do not capture the thermodynamics of electrons in the low density accreting plasma. This poses a significant challenge in predicting accretion flow images and spectra from first principles. Read More

We calculate the rotational broadening in the observed thermal spectra of neutron stars spinning at moderate rates in the Hartle-Thorne approximation. These calculations accurately account for the effects of the second-order Doppler boosts as well as for the oblate shapes and the quadrupole moments of the neutron stars. We find that fitting the spectra and inferring the bolometric fluxes under the assumption that a star is not rotating causes an underestimate of the inferred fluxes and, thus, radii. Read More

Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. Read More

We combine cosmological hydrodynamic simulations with analytic models to evaluate the role of galaxy-scale gravitational torques on the evolution of massive black holes at the centers of star-forming galaxies. We confirm and extend our earlier results to show that torque-limited growth yields black holes and host galaxies evolving on average along the Mbh-Mbulge relation from early times down to z = 0 and that convergence onto the scaling relation occurs independent of the initial conditions and with no need for mass averaging through mergers or additional self-regulation processes. Smooth accretion dominates the long-term evolution, with black hole mergers with mass ratios >1:5 representing typically a small fraction of the total growth. Read More

Using stellar structure calculations in the Hartle-Thorne approximation, we derive analytic expressions connecting the ellipticity of the stellar surface to the compactness, the spin angular momentum, and the quadrupole moment of the spacetime. We also obtain empirical relations between the compactness, the spin angular momentum, and the spacetime quadrupole. Our formulae reproduce the results of numerical calculations to within a few percent and help reduce the number of parameters necessary to model the observational appearance of moderately spinning neutron stars. Read More

We present a new numerical algorithm for the calculation of pulse profiles from spinning neutron stars in the Hartle-Thorne approximation. Our approach allows us to formally take into account the effects of Doppler shifts and aberration, of frame dragging, as well as of the oblateness of the stellar surface and of its quadrupole moment. We confirm an earlier result that neglecting the oblateness of the neutron-star surface leads to ~5-30% errors in the calculated profiles and further show that neglecting the quadrupole moment of its spacetime leads to ~1-5% errors at a spin frequency of 600 Hz. Read More

We use high-resolution cosmological zoom simulations with ~200 pc resolution at z = 2 and various prescriptions for galactic outflows in order to explore the impact of winds on the morphological, dynamical, and structural properties of eight individual galaxies with halo masses ~ 10^11--2x10^12 Msun at z = 2. We present a detailed comparison to spatially and spectrally resolved H{\alpha} and other observations of z ~ 2 galaxies. We find that simulations without winds produce massive, compact galaxies with low gas fractions, super-solar metallicities, high bulge fractions, and much of the star formation concentrated within the inner kpc. Read More

2013Mar
Affiliations: 1Department of Astronomy, University of Arizona, 2Department of Astronomy, University of Arizona, 3Department of Astronomy, University of Arizona

We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This GPU-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 nanosecond per photon per time step). Read More

Recent models of black hole growth in a cosmological context have forwarded a paradigm in which the growth is self-regulated by feedback from the black hole itself. Here we use cosmological zoom simulations of galaxy formation down to z = 2 to show that such strong self-regulation is required in the popular spherical Bondi accretion model, but that a plausible alternative model in which black hole growth is limited by galaxy-scale torques does not require self-regulation. Instead, this torque-limited accretion model yields black holes and galaxies evolving on average along the observed scaling relations by relying only on a fixed, 5% mass retention rate onto the black hole from the radius at which the accretion flow is fed. Read More

We use time resolved spectroscopy of thermonuclear X-ray bursts observed from SAX J1748.9-2021 to infer the mass and the radius of the neutron star in the binary. Four X-ray bursts observed from the source with RXTE enable us to measure the angular size and the Eddington limit on the neutron star surface. Read More

Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic, and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition, and magnetic fields. Read More

Neutron stars spinning at moderate rates (~300-600Hz) become oblate in shape and acquire a nonzero quadrupole moment. In this paper, we calculate profiles of atomic features from such neutron stars using a ray-tracing algorithm in the Hartle-Thorne approximation. We show that line profiles acquire cores that are much narrower than the widths expected from pure Doppler effects for a large range of observer inclinations. Read More

A dense ionized cloud of gas has been recently discovered to be moving directly toward the supermassive black hole, Sgr A*, at the Galactic Center. In June 2013, at the pericenter of its highly eccentric orbit, the cloud will be approximately 3100 Schwarzschild radii from the black hole and will move supersonically through the ambient hot gas with a velocity of v_p ~ 5400 km/s. A bow shock is likely to form in front of the cloud and could accelerate electrons to relativistic energies. Read More

2012May
Affiliations: 1Sabanci, 2Sabanci, 3Arizona

We present a systematic analysis of all archival Chandra observations of the soft-gamma repeater SGR 0526-66. Our results show that the X-ray flux of SGR 0526-66 decayed by about 20% between 2000 and 2009. We employ physically motivated X-ray spectral models and determine the effective temperature and the strength of the magnetic field at the surface as kT = 0. Read More

We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1. Read More

Dynamical mass measurements to date have allowed determinations of the mass M and the distance D of a number of nearby supermassive black holes. In the case of Sgr A*, these measurements are limited by a strong correlation between the mass and distance scaling roughly as M ~ D^2. Future very-long baseline interferometric (VLBI) observations will image a bright and narrow ring surrounding the shadow of a supermassive black hole, if its accretion flow is optically thin. Read More

We explore the evolution of the mass distribution of dust in collision-dominated debris disks, using the collisional code introduced in our previous paper. We analyze the equilibrium distribution and its dependence on model parameters by evolving over 100 models to 10 Gyr. With our numerical models, we confirm that systems reach collisional equilibrium with a mass distribution that is steeper than the traditional solution by Dohnanyi (1969). Read More

We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. Read More

A moderately spinning neutron star acquires an oblate shape and a spacetime with a significant quadrupole moment. These two properties affect its apparent surface area for an observer at infinity, as well as the lightcurve arising from a hot spot on its surface. In this paper, we develop a ray-tracing algorithm to calculate the apparent surface areas of moderately spinning neutron stars making use of the Hartle-Thorne metric. Read More

Measurements of neutron star masses and radii are instrumental for determining the equation of state of their interiors, understanding the dividing line between neutron stars and black holes, and for obtaining accurate statistics of source populations in the Galaxy. We report here on the measurement of the mass and radius of the neutron star in the low-mass X-ray binary KS 1731-260. The analysis of the spectroscopic data on multiple thermonuclear bursts yields well-constrained values for the apparent angular area and the Eddington flux of the source, both of which depend in a distinct way on the mass and radius of the neutron star. Read More

Time resolved X-ray spectroscopy of thermonuclear bursts observed from low mass X-ray binaries offer a unique tool to measure neutron star masses and radii. In this paper, we continue our systematic analysis of all the X-ray bursts observed with RXTE from X-ray binaries. We determine the events which show clear evidence for photospheric radius expansion and measure the Eddington limits for these accreting neutron stars using the bolometric fluxes attained at the touchdown moments of each X-ray burst. Read More

The masses and radii of low-magnetic field neutron stars can be measured by combining different observable quantities obtained from their X-ray spectra during thermonuclear X-ray bursts. One of these quantities is the apparent radius of each neutron star as inferred from the X-ray flux and spectral temperature measured during the cooling tails of bursts, when the thermonuclear flash is believed to have engulfed the entire star. In this paper, we analyze 13,095 X-ray spectra of 446 X-ray bursts observed from 12 sources in order to assess possible systematic effects in the measurements of the apparent radii of neutron stars. Read More

The observed upper bound on the spin down rate of the otherwise typical Soft Gamma-ray Repeater SGR 0418+5729 has challenged the interpretation of this source as a neutron star with ultrastrong magnetic fields. Current limits imply a dipole magnetic field strength of less than 7.5 x 10^{12} G (Rea et al. Read More

2011Jan
Affiliations: 1Sabanci Univ., Istanbul, 2Univ. of Arizona, 3Univ. of Arizona, 4Ben-Gurion Univ., 5NASA/MSFC

The prolific magnetar SGR 1900+14 showed two outbursts in the last decade and has been closely monitored in the X-rays to track the changes in its radiative properties. We use archival Chandra and XMM-Newton observations of SGR 1900+14 to construct a history of its spectrum and persistent X-ray flux spanning a period of about seven years. We show that the decline of its X-ray flux in these two outburst episodes follows the same trend. Read More

X-ray observations of EXO 0748-676 during thermonuclear bursts revealed a set of narrow absorption lines that potentially originate from the stellar photosphere. The identification of these lines with particular atomic transitions led to the measurement of the surface gravitational redshift of the neutron star and to constraints on its mass and radius. However, the recent detection of 552 Hz oscillations at 15% rms amplitude revealed the spin frequency of the neutron star and brought into question the consistency of such a rapid spin with the narrow width of the absorption lines. Read More

We use dynamical mass measurements of 16 black holes in transient low-mass X-ray binaries to infer the stellar black hole mass distribution in the parent population. We find that the observations are best described by a narrow mass distribution at 7.8 +/- 1. Read More