Fabrizio Falchi

Fabrizio Falchi
Are you Fabrizio Falchi?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Fabrizio Falchi
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (5)
 
Computer Science - Information Retrieval (4)
 
Computer Science - Multimedia (1)
 
Computer Science - Computation and Language (1)
 
Computer Science - Neural and Evolutionary Computing (1)

Publications Authored By Fabrizio Falchi

The recently proposed stochastic residual networks selectively activate or bypass the layers during training, based on independent stochastic choices, each of which following a probability distribution that is fixed in advance. In this paper we present a first exploration on the use of an epoch-dependent distribution, starting with a higher probability of bypassing deeper layers and then activating them more frequently as training progresses. Preliminary results are mixed, yet they show some potential of adding an epoch-dependent management of distributions, worth of further investigation. Read More

Content-Based Image Retrieval based on local features is computationally expensive because of the complexity of both extraction and matching of local feature. On one hand, the cost for extracting, representing, and comparing local visual descriptors has been dramatically reduced by recently proposed binary local features. On the other hand, aggregation techniques provide a meaningful summarization of all the extracted feature of an image into a single descriptor, allowing us to speed up and scale up the image search. Read More

In this paper we tackle the problem of image search when the query is a short textual description of the image the user is looking for. We choose to implement the actual search process as a similarity search in a visual feature space, by learning to translate a textual query into a visual representation. Searching in the visual feature space has the advantage that any update to the translation model does not require to reprocess the, typically huge, image collection on which the search is performed. Read More

Surrogate Text Representation (STR) is a profitable solution to efficient similarity search on metric space using conventional text search engines, such as Apache Lucene. This technique is based on comparing the permutations of some reference objects in place of the original metric distance. However, the Achilles heel of STR approach is the need to reorder the result set of the search according to the metric distance. Read More

A new class of applications based on visual search engines are emerging, especially on smart-phones that have evolved into powerful tools for processing images and videos. The state-of-the-art algorithms for large visual content recognition and content based similarity search today use the "Bag of Features" (BoF) or "Bag of Words" (BoW) approach. The idea, borrowed from text retrieval, enables the use of inverted files. Read More

The scalability, as well as the effectiveness, of the different Content-based Image Retrieval (CBIR) approaches proposed in literature, is today an important research issue. Given the wealth of images on the Web, CBIR systems must in fact leap towards Web-scale datasets. In this paper, we report on our experience in building a test collection of 100 million images, with the corresponding descriptive features, to be used in experimenting new scalable techniques for similarity searching, and comparing their results. Read More