Fabrice Mottez - LUTH

Fabrice Mottez
Are you Fabrice Mottez?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Fabrice Mottez
Affiliation
LUTH
Location

Pubs By Year

Pub Categories

 
Earth and Planetary Astrophysics (10)
 
High Energy Astrophysical Phenomena (5)
 
Solar and Stellar Astrophysics (3)
 
Physics - Plasma Physics (2)
 
Physics - Space Physics (2)
 
Astrophysics (1)
 
Quantum Physics (1)
 
High Energy Physics - Theory (1)

Publications Authored By Fabrice Mottez

Neutron-star magnetospheres are structured by very intense magnetic fields extending from 100 to 10 5 km traveled by very energetic electrons and positrons with Lorentz factors up to $\sim$ 10 7. In this context, particles are forced to travel almost along the magnetic field with very small gyro-motion, potentially reaching the quantified regime. We describe the state of Dirac particles in a locally uniform, constant and curved magnetic field in the approximation that the Larmor radius is very small compared to the radius of curvature of the magnetic field lines. Read More

We investigate the evaporation of close-by pulsar companions, such as planets, asteroids, and white dwarfs, by induction heating. Assuming that the outflow energy is dominated by a Poynting flux (or pulsar wave) at the location of the companions, we calculate their evaporation timescales, by applying the Mie theory. Depending on the size of the companion compared to the incident electromagnetic wavelength, the heating regime varies and can lead to a total evaporation of the companion. Read More

The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources, of unknown origin but extremely energetic. We propose here a new explanation - not requiring an extreme release of energy - involving a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. We investigate a theory of radio waves associated to such pulsar-orbiting bodies. Read More

It is shown that two circularly polarised Alfv\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. Read More

We investigate whether one or many companions are orbiting the extremely intermittent pulsar PSR B1931+24. We constrained our analysis on previous observations of eight fundamental properties of PSR B1931+24. The most puzzling properties are the intermittent nature of the pulsar's activity, with active and quiet phases that alternate quasi-periodically; the variation of the slowing-down rate of its period between active and quiet phases; and because there are no timing residuals, it is highly unlikely that the pulsar has a massive companion. Read More

We investigate whether there may be one or many companions orbiting at close distance to the light cylinder around the extremely intermittent pulsars PSR B1931+24 and PSR J1841-0500. These pulsars, behaving in a standard way when they are active, also "switch off" for durations of several days, during which their magnetospheric activity is interrupted or reduced. We constrained our analysis on eight fundamental properties of PSR B1931+24 that summarise the observations. Read More

In the Earth auroral zone, the electron acceleration by Alfv\'en waves is sometimes a precursor of the non-propagating acceleration structures. In order to investigate how Alfv\'en waves could generate non-propagating electric fields, a series of simulations of counter-propagating waves in a uniform plasma is presented. The waves (initially not configured to accelerate particles) propagate along the ambient magnetic field direction. Read More

We investigate the electromagnetic interaction of a relativistic stellar wind with a planet or a smaller body in orbit around a pulsar. This may be relevant to objects such as PSR B1257+12 and PSR B1620-26 that are expected to hold a planetary system, or to pulsars with suspected asteroids or comets. Most models of pulsar winds predict that, albeit highly relativistic, they are slower than Alfv\'en waves. Read More

The acceleration of electrons at 1-10 keV energies is the cause of the polar aurora displays, and an important factor of magnetic energy transfer from the solar wind to the Earth. Two main families of acceleration processes are observed: those based on coherent quasi-static structures called double layers, and those based of the propagation of Alfv\'en Waves (AW). This paper is a review of the Alfv\'enic acceleration processes, and of their role in the global dynamics of the auroral zone. Read More

A planet orbiting around a pulsar would be immersed in an ultra-relativistic under-dense plasma flow. It would behave as a unipolar inductor, with a significant potential drop along the planet. As for Io in Jupiter's magnetosphere, there would be two stationary Alfv\'en waves, the Alfv\'en wings (AW), attached to the planet. Read More

We investigate the electromagnetic interaction of a relativistic stellar wind with a planet or a smaller body in orbit around the star. This may be relevant to objects orbiting a pulsar, such as PSR B1257+12 and PSR B1620-26 that are expected to hold a planetary system, or to pulsars with suspected asteroids or comets. We extend the theory of Alfv\'en wings to relativistic winds. Read More

We investigate the electromagnetic interaction of a relativistic stellar wind with small bodies in orbit around the star. Based on our work on the theory of Alfv\'en wings to relativistic winds presented in a companion paper, we estimate the force exerted by the associated current system on orbiting bodies and evaluate the resulting orbital drift. This Alfv\'enic structure is found to have no significant influence on planets or smaller bodies orbiting a millisecond pulsar. Read More

Tsiklauri et al. recently published a theoretical model of electron acceleration by Alfv\'en waves in a nonuniform collisionless plasmas. We compare their work with a series of results published earlier by an another team, of which Tsiklauri et al. Read More

The tangential layers are characterized by a bulk plasma velocity and a magnetic field that are perpendicular to the gradient direction. They have been extensively described in the frame of the Magneto-Hydro-Dynamic (MHD) theory. But the MHD theory does not look inside the transition region if the transition has a size of a few ion gyroradii. Read More