F. Sahraoui

F. Sahraoui
Are you F. Sahraoui?

Claim your profile, edit publications, add additional information:

Contact Details

Name
F. Sahraoui
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Space Physics (7)
 
Solar and Stellar Astrophysics (6)
 
Physics - Plasma Physics (4)
 
Earth and Planetary Astrophysics (2)

Publications Authored By F. Sahraoui

We report the observations of an electron vortex magnetic hole corresponding to a new type of coherent structures in the magnetosheath turbulent plasma using the Magnetospheric Multiscale (MMS) mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the center of the magnetic hole and a peak in the outer region of the magnetic hole. Read More

Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within the incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in-situ data from the THEMIS/ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. Read More

Low frequency turbulence in Saturn's magnetosheath is investigated using in-situ measurements of the Cassini spacecraft. Focus is put on the magnetic energy spectra computed in the frequency range $\sim[10^{-4}, 1]$Hz. A set of 42 time intervals in the magnetosheath were analyzed and three main results that contrast with known features of solar wind turbulence are reported: 1) The magnetic energy spectra showed a $\sim f^{-1}$ scaling at MHD scales followed by an $\sim f^{-2. Read More

In the solar wind, power spectral density (PSD) of the magnetic field fluctuations generally follow the so-called Kolmogorov spectrum f^-5/3 in the inertial range, where the dynamics is thought to be dominated by nonlinear interactions between counter-propagating incompressible Alfv\'en wave parquets. These features are thought to be ubiquitous in space plasmas. The present study gives a new and more complex picture of magnetohydrodynamics (MHD) turbulence as observed in the terrestrial magnetosheath. Read More

The role of compressible fluctuations in the energy cascade of fast solar wind turbulence is studied using a reduced form of an exact law derived recently (Banerjee and Galtier, PRE, 2013) for compressible isothermal magnetohydrodynamics and in-situ observations from the THEMIS B/ARTEMIS P1 spacecraft. A statistical survey of the data revealed a turbulent energy cascade over two decades of scales, which is broader than the previous estimates made from an exact incompressible law. A term-by-term analysis of the compressible model reveals new insight into the role played by the compressible fluctuations in the energy cascade. Read More

We derive exact scaling laws for a three-dimensional incompressible helical two-fluid plasma, without the assumption of isotropy. For each ideal invariant of the two-fluid model, i.e. Read More

We present a first statistical study of subproton and electron scales turbulence in the terrestrial magnetosheath using the Cluster Search Coil Magnetometer (SCM) waveforms of the STAFF instrument measured in the frequency range [1,180] Hz. It is found that clear spectral breaks exist near the electron scale, which separate two power-law like frequency bands referred to as the dispersive and the electron dissipation ranges. The frequencies of the breaks f_b are shown to be well correlated with the electron gyroscale \rho_e rather than with the electron inertial length de. Read More

Electron scale solar wind turbulence has attracted great interest in recent years. Clear evidences have been given from the Cluster data that turbulence is not fully dissipated near the proton scale but continues cascading down to the electron scales. However, the scaling of the energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Read More

The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays. Although recent observations gave evidence of the dominance of Kinetic Alfv\'en Waves (KAW) at sub-ion scales with $\omega<{\omega_{ci}}$, other studies suggest that the KAW mode cannot carry the turbulence cascade down to electron scales and that the whistler mode (i.e. Read More

The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase towards isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Read More