F. Petriello - Argonne and Northwestern University

F. Petriello
Are you F. Petriello?

Claim your profile, edit publications, add additional information:

Contact Details

Name
F. Petriello
Affiliation
Argonne and Northwestern University
City
Argonne
Country
United States

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Phenomenology (50)
 
High Energy Physics - Experiment (31)
 
Nuclear Theory (3)
 
Cosmology and Nongalactic Astrophysics (2)
 
High Energy Physics - Theory (1)
 
Physics - Computational Physics (1)
 
High Energy Physics - Lattice (1)

Publications Authored By F. Petriello

We discuss the leading-logarithmic power corrections in the $N$-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary $N$-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for both $q\bar{q}$ and $gg$ initiated processes. Our results are compact and simple to implement numerically. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We compute the ${\cal O}(\alpha^2\alpha_s^2)$ perturbative corrections to inclusive jet production in electron-nucleon collisions. This process is of particular interest to the physics program of a future Electron Ion Collider (EIC). We include all relevant partonic processes, including deep-inelastic scattering contributions, photon-initiated corrections, and parton-parton scattering terms that first appear at this order. Read More

This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches. Read More

This report was prepared in the context of the LPCC "Electroweak Precision Measurements at the LHC WG" and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the $W$ boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. Read More

We present the implementation of several color-singlet final-state processes at Next-to-Next-to Leading Order (NNLO) accuracy in QCD to the publicly available parton-level Monte Carlo program MCFM. Specifically we discuss the processes $pp\rightarrow H$, $pp\rightarrow Z$, $pp\rightarrow W$, $pp\rightarrow HZ$, $pp\rightarrow HW$ and $pp\rightarrow\gamma\gamma$. Decays of the unstable bosons are fully included, resulting in a flexible fully differential Monte Carlo code. Read More

This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators. Read More

This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. Read More

We present a detailed phenomenological study of Z-boson production in association with a jet through next-to-next-to-leading order (NNLO) in perturbative QCD. Fiducial cross sections and differential distributions for both 8 TeV and 13 TeV LHC collisions are presented. We study the impact of different parton distribution functions (PDFs) on predictions for the Z+jet process. Read More

We present a detailed phenomenological study of W-boson production in association with a jet through next-to-next-to-leading order (NNLO) in perturbative QCD. Fiducial cross sections and differential distributions for both 8 TeV and 13 TeV LHC collisions are presented, as are results for both the inclusive one-jet bin and the exclusive one-jet bin. Two different event selection criteria are considered: a general selection with standard cuts used in experimental analyses, and a boosted selection that focuses on high transverse momentum jets. Read More

We perform a detailed comparison of next-to-next-to-leading order (NNLO) QCD predictions for the W+jet and Z+jet processes with 7 TeV experimental data from ATLAS and CMS. We observe excellent agreement between theory and data for most studied observables, which span several orders of magnitude in both cross section and energy. For some observables, such as the $H_T$ distribution, the NNLO QCD corrections are essential for resolving existing discrepancies between theory and data. Read More

We present the first complete calculation of Z-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently-proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. Read More

We use the recently proposed jettiness-subtraction scheme to provide the complete calculation of Higgs boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. This method exploits the observation that the $N$-jettiness event-shape variable completely describes the singularity structure of QCD when final-state colored particles are present. Our results are in agreement with a recent computation of the $gg$ and $qg$ partonic initial states based on sector-improved residue subtraction. Read More

We present precise predictions for Higgs boson production in association with a jet. Our calculation is accurate to next-to-next-to-leading order (NNLO) QCD in the Higgs Effective Field Theory and constitutes the first complete NNLO computation for Higgs production with a final-state jet in hadronic collisions. We include all relevant phenomenological channels and present fully-differential results as well as total cross sections for the LHC. Read More

We present a general framework for the calculation of soft functions for SCET_I observables through next-to-next-to-leading order (NNLO) in the strong coupling constant. As an example of our formalism we show how it can be used to obtain the complete NNLO soft function for the $N$-jettiness event shape variable. We present numerical results for two examples with phenomenological impact: the one-jettiness soft function for both electron-proton and proton-proton collisions. Read More

We present the complete calculation of $W$-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. To cancel infrared divergences we introduce a new subtraction method that exploits the fact that the $N$-jettiness event-shape variable fully captures the singularity structure of QCD amplitudes with final-state partons. This method holds for processes with an arbitrary number of jets, and is easily implemented into existing frameworks for higher-order calculations. Read More

The realization that first- and second-generation Yukawa couplings can be probed by decays of the Higgs boson to a meson in association with a photon has renewed interest in such rare exclusive decays. We present here a detailed study of the rare $Z$-boson processes $Z \to J/\psi+\gamma$, $Z \to \Upsilon+\gamma$, and $Z \to \phi+\gamma$ that can serve as benchmarks for the analogous Higgs-boson decays. We include both direct-production and fragmentation contributions to these decays, and consider the leading QCD corrections and the relativistic corrections to the $J/\psi$ and $\Upsilon$ processes. Read More

2014Jul
Affiliations: 1Argonne, 2Argonne, 3Korea U., 4Korea U., 5Argonne and Northwestern U.

We improve the theoretical predictions for the decays of the Higgs boson to an $S$-wave vector quarkonium plus a photon by calculating the relativistic correction of order $v^2$, where $v$ is the heavy-quark velocity in the quarkonium rest frame. Our numerical results are given for the $J/\psi$ and $\Upsilon(nS)$ channels, with $n=1,2,3$. The numerical results include a previously calculated correction of order $\alpha_s$ and summations, to all orders in $\alpha_s$, of leading logarithms of $m_H^2/m_Q^2$, where $m_H$ is the Higgs-boson mass and $m_Q$ is the heavy-quark mass. Read More

We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h->MV, where M denotes a vector meson and V indicates either gamma, W or Z. We calculate the branching ratios for these processes in both the Standard Model and its possible extensions. We discuss the experimental prospects for their observation. Read More

These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. Read More

Experimental analyses often use jet binning to distinguish between different kinematic regimes and separate contributions from background processes. To accurately model theoretical uncertainties in these measurements, a consistent description of the jet bins is required. We present a complete framework for the combination of resummed results for production processes in different exclusive jet bins, focusing on Higgs production in gluon fusion as an example. Read More

We present a detailed numerical study of lepton-pair production via the Drell-Yan process above the Z-peak at the LHC. Our results consistently combine next-to-next-to-leading order QCD corrections and next-to-leading order electroweak effects, and include the leading photon-initiated processes using a recent extraction of the photon distribution function. We focus on the effects of electroweak corrections and of photon-photon scattering contributions, and demonstrate which kinematic distributions exhibit sensitivity to these corrections. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

We present a survey of the most abundant processes at the LHC for sensitivity to electroweak corrections at \sqrt{s} = 8, 14, 33, and 100 TeV proton-proton collision energies. The processes studied are pp -> dijet, inclusive W and Z, W/Z+jets, and WW. In each case we compare the experimental uncertainty in the highest kinematic regions of interest with the relative magnitude of electroweak corrections and fixed-order \alpha_S calculations. Read More

2013Jul
Authors: The LHC Higgs Cross Section Working Group, S. Heinemeyer1, C. Mariotti2, G. Passarino3, R. Tanaka4, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

In this paper we discuss decays of the Higgs boson to quarkonia in association with a photon. We identify a new mechanism for producing such final states in Higgs decays that leads to predictions for the decay rates that differ by an order of magnitude from previous estimates. Although the branching ratios for these processes are still small, the processes are experimentally clean, and the H \to J/\psi+gamma decay should be observable at a 14 TeV LHC. Read More

We resum a class of large Sudakov logarithms affecting Higgs boson production in the exclusive one-jet bin at the LHC. We extend previous results by calculating the full one-loop soft function for this process, which extends the accuracy of the resummation to include the leading three logarithmic corrections at each order in the QCD coupling constant. We match this result to the next-to-leading order cross section and present a detailed numerical study assuming realistic LHC cuts. Read More

We report on a calculation of the cross-section for Higgs boson production in gluon fusion in association with a hadronic jet at next-to-next-to-leading order (NNLO) in perturbative QCD. The computational technique is discussed in detail. We show explicitly how to employ known soft and collinear limits of scattering amplitudes to construct subtraction terms for NNLO computations. Read More

We derive a factorization theorem for production of an arbitrary number of color-singlet particles accompanied by a fixed number of jets at the LHC. The jets are defined with the standard anti-$k_T$ algorithm, and the fixed number of jets is obtained by imposing a veto on additional radiation in the final state. The formalism presented here is useful for current Higgs boson analyses using exclusive jet bins, and for other studies using a similar strategy. Read More

We combine the next-to-next-to-leading order (NNLO) QCD corrections to lepton-pair production through the Drell-Yan mechanism with the next-to-leading order (NLO) electroweak corrections within the framework of the FEWZ simulation code. Control over both sources of higher-order contributions is necessary for measurements where percent-level theoretical predictions are crucial, and in phase-space regions where the NLO electroweak corrections grow large. The inclusion of both corrections in a single simulation code eliminates the need to separately incorporate such effects as final-state radiation and electroweak Sudakov logarithms when comparing many experimental results to theory. Read More

We introduce a class of asymmetries sensitive to the spin and CP properties of the new boson discovered by the ATLAS and CMS experiments. These asymmetries can be measured in the four-lepton final state, and are defined by integrating the invariant masses of the lepton pairs over specified ranges. We outline a program of measurements using initial LHC data to determine the quantum numbers and coupling structure, provide analytic expressions for decay widths in several representative models, and discuss what can be determined using the available data. Read More

Signatures of new physics beyond the Standard Model are often characterized by large missing transverse energy ($\not E_T$) produced in association with multiple jets. The dominant Standard Model background to such processes comes from gauge-boson production in association with jets. A standard search strategy involves looking for an excess in the $m_{eff}$ distribution, where $m_{eff}= \not E_T +\sum_{J} p^T_J$ and $p^T_J$ denotes the transverse momentum of the $J$-th jet. Read More

We present an updated version of the FEWZ (Fully Exclusive W and Z production) code for the calculation of W and gamma*/Z production at next-to-next-to-leading order in the strong coupling. Several new features and observables are introduced, and an order-of-magnitude speed improvement over the performance of FEWZ 2.0 is demonstrated. Read More

2012Jan
Authors: LHC Higgs Cross Section Working Group, S. Dittmaier1, C. Mariotti2, G. Passarino3, R. Tanaka4, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We use the known soft and collinear limits of tree- and one-loop scattering amplitudes -- computed over a decade ago -- to explicitly construct a subtraction scheme for next-to-next-to-leading order (NNLO) computations. Our approach combines partitioning of the final-state phase space together with the technique of sector decomposition, following recent suggestions in Ref. [1]. Read More

These are the proceedings of the "Workshop on Precision Measurements of alphas" held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of alphas(mZ) in the MS-bar scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, tau-decays, electroweak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks. Read More

We review a new approach to calculating transverse momentum distributions of the Higgs and electroweak gauge bosons using the Soft-Collinear Effective Theory. We derive a factorization theorem for transverse momentum distributions in terms of newly-defined impact-parameter beam functions (iBFs) and an inverse soft function (iSF). The iBFs correspond to completely unintegrated parton distribution functions and provide interesting probes of momentum distributions within nucleons. Read More

The four-dimensional helicity regularization scheme is often used in one-loop QCD computations. It was recently argued in Ref. [1] that this scheme is inconsistent beyond the one-loop order in perturbation theory. Read More

We present next-to-next-to-leading-order (NNLO) results for an exclusive soft function that appears in a recently developed factorization theorem for transverse momentum distributions. The factorization theorem, derived using the Soft Collinear Effective Theory, involves both a soft function and unintegrated nucleon distribution functions fully differential in momentum coordinates. The soft function is given by the vacuum matrix element of soft Wilson lines and is also fully differential in all components. Read More

We introduce an improved version of the simulation code FEWZ (Fully Exclusive W and Z Production) for hadron collider production of lepton pairs through the Drell-Yan process at next-to-next-to-leading-order (NNLO) in the strong coupling constant. The program is fully differential in the phase space of leptons and additional hadronic radiation. The new version offers users significantly more options for customization. Read More

We study the low transverse momentum (p_T) distribution of the Z-boson at hadron colliders for p_T ~ Lambda_{QCD} using a factorization and resummation formula derived in the Soft Collinear Effective Theory (SCET). In the region p_T ~ Lambda_{QCD}, new non-perturbative effects arise that cannot be entirely captured by the standard parton distribution functions, and require an additional new non-perturbative transverse momentum function (TMF). The TMF is field-theoretically defined in SCET, fully gauge invariant, and captures the non-perturbative dynamics that affects the p_T-distribution in the region p_T ~ Lambda_{QCD}. Read More

We derive a factorization theorem for the differential distributions of electroweak gauge bosons in Drell-Yan processes, valid at low transverse momentum, using the Soft-Collinear Effective Theory (SCET). We present the next-to-leading logarithmic (NLL) transverse momentum distribution for the Z-boson and find good agreement with Tevatron data collected by the CDF and D0 collaborations. We also give predictions for the Higgs boson differential distributions at NLL based on a factorization theorem derived in earlier work. Read More

We describe an effective-theory computation of the next-to-next-to-leading order (NNLO) QCD corrections to the gluon-fusion production of a Higgs boson in models with massive color-octet scalars in the (8,1)_0 representation. Numerical results are presented for both the Tevatron and the LHC. The estimated theoretical uncertainty is greatly reduced by the inclusion of the NNLO corrections. Read More

We compute the next-to-next-to-leading order QCD corrections to the gluon-fusion production of a Higgs boson in models with massive color-octet scalars in the ${\bf (8,1)_0}$ representation using an effective-theory approach. We derive a compact analytic expression for the relevant Wilson coefficient, and explain an interesting technical aspect of the calculation that requires inclusion of the quartic-scalar interactions at next-to-next-to-leading order. We perform a renormalization-group analysis of the scalar couplings to derive the allowed regions of parameter space, and present phenomenological results for both the Tevatron and the LHC. Read More

We derive a factorization theorem for the Higgs boson transverse momentum (p_T) and rapidity (Y) distributions at hadron colliders, using the Soft Collinear Effective Theory (SCET), for m_h>> p_T>> \Lambda_{QCD} where m_h denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the p_T scale is further factorized into two collinear impact-parameter Beam Functions (iBFs) and an inverse Soft Function (iSF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. Read More

We study the potential of the LHC and future low-energy experiments to precisely measure the underlying model parameters of a new Z' boson. We emphasize the complimentary information obtained from both on- and off-peak LHC dilepton data, from the future Q-weak measurement of the weak charge of the proton, and from a proposed measurement of parity violation in low-energy Moller scattering. We demonstrate the importance of off-peak LHC data and Q-weak for removing sign degeneracies between Z' couplings that occur if only on-peak LHC data is studied. Read More