F. L. Ning

F. L. Ning
Are you F. L. Ning?

Claim your profile, edit publications, add additional information:

Contact Details

F. L. Ning

Pubs By Year

Pub Categories

Physics - Strongly Correlated Electrons (38)
Physics - Superconductivity (25)
Physics - Materials Science (13)
Physics - Instrumentation and Detectors (2)
Physics - Other (2)
High Energy Physics - Experiment (1)
Astrophysics (1)
Instrumentation and Methods for Astrophysics (1)
Quantum Physics (1)
Physics - Mesoscopic Systems and Quantum Hall Effect (1)
Cosmology and Nongalactic Astrophysics (1)

Publications Authored By F. L. Ning

Neutron diffraction and muon spin relaxation ($\mu$SR) studies are presented for the newly characterized polymorph of NiNb$_2$O$_6$ ($\beta$-NiNb$_2$O$_6$) with space group P4$_2$/n and $\mu$SR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4$_2$/n form was determined from neutron diffraction using both powder and single crystal data. Powder neutron diffraction determined an ordering wave vector $\vec{k}$ = ($\frac{1}{2},\frac{1}{2},\frac{1}{2}$). Read More

Electronic structure of single crystalline Ba(Zn$_{0.875}$Mn$_{0.125}$)$_{2}$As$_{2}$, parent compound of the recently founded high-temperature ferromagnetic semiconductor, was studied by high-resolution photoemission spectroscopy (ARPES). Read More

A new diluted ferromagnetic semiconductor (Sr,Na)(Zn,Mn)2As2 is reported, in which charge and spin doping are decoupled via Sr/Na and Zn/Mn substitutions, respectively, being distinguished from classic (Ga,Mn)As where charge & spin doping are simultaneously integrated. Different from the recently reported ferromagnetic (Ba,K)(Zn,Mn)2As2, this material crystallizes into the hexagonal CaAl2Si2-type structure. Ferromagnetism with a Curie temperature up to 20 K has been observed from magnetization. Read More

Here we report the successful synthesis of a spin- & charge-decoupled diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2As2, crystallizing into the hexagonal CaAl2Si2 structure. The compound shows a ferromagnetic transition with a Curie temperature up to 33 K with 10% Na doping, which gives rise to carrier density of np~10^20 cm^-3. The new DMS is a soft magnetic material with HC<400 Oe. Read More

We use NMR techniques to investigate the magnetic properties of BaCo2As2 single crystals, the non-superconducting end member of the Co-substituted iron-pnictide high Tc superconductor Ba(Fe1-xCox)2As2 with x = 1. We present 75As NMR evidence for enhancement of low frequency spin fluctuations below ~ 100 K. This enhancement is accompanied by that of static uniform spin susceptibility at the wave vector q = 0, suggesting that the primary channel of the spin correlations is ferromagnetic rather than antiferromagnetic. Read More

We investigate the nature of the SDW (Spin Density Wave) transition in the underdoped regime of an iron-based high Tc superconductor Ba(Fe1-xCox)2As2 by 75As NMR, with primary focus on a composition with x = 0.02 (T_SDW = 99 K).We demonstrate that critical slowing down toward the three dimensional SDW transition sets in at the tetragonal to orthorhombic structural phase transition, Ts = 105 K, suggesting strong interplay between structural distortion and spin correlations. Read More

(La1-xSrx)(Zn1-yMny)AsO is a two dimensional diluted ferromagnetic semiconductor that has the advantage of decoupled charge and spin doping. The substitution of Sr2+ for La3+ and Mn2+ for Zn2+ into the parent semiconductor LaZnAsO introduces hole carriers and spins, respectively. This advantage enables us to investigate the influence of carrier doping on the ferromagnetic ordered state through the control of Sr concentrations in (La1-xSrx)(Zn0. Read More

We investigate the static and dynamic spin susceptibility of the 111 type Fe-based superconductor LiFeP with Tc ~ 5 K through the measurement of Knight shift 31K and the spin-lattice relaxation rate 1/T1 at 31P site by nuclear magnetic resonance. The constant 31K, small magnitudes of 1/T1T, along with the resistivity rho ~ T^2 all point to the weak spin correlations in LiFeP. 1/T1T display small enhancement toward Tc, indicating that the superconductivity is intimately correlated with the antiferromagnetic spin fluctuations. Read More

We report the synthesis and characterization of bulk form diluted magnetic semiconductors Ba(Zn1-2xMnxCox)2As2 (0 <= x <= 0.15) with a crystal structure identical to that of 122-type Fe-based superconductors. Mn and Co co-doping into the parent compound BaZn2As2 results in a ferromagnetic ordering below TC ~ 80 K. Read More

A new diluted magnetic semiconductor system, (Sr3La2O5)(Zn1-xMnx)2As2, has been synthesized and characterized. 10% Mn substitution for Zn in bulk form (Sr3La2O5)Zn2As2 results in a ferromagnetic ordering below Curie temperature, TC ~ 40 K. (Sr3La2O5)(Zn1-xMnx)2As2 has a layered crystal structure identical to that of 32522-type Fe based superconductors, and represents the fifth DMS family that has a direct counterpart among the FeAs high temperature superconductor families. Read More

The doping effect of Sr and transition metals Mn, Fe, Co into the direct-gap semiconductor LaZnAsO has been investigated. Our results indicate that the single phase ZrCuSiAs-type tetragonal crystal structure is preserved in (La1-xSrx)(Zn1-xTMx)AsO (TM = Mn, Fe, Co) with the doping level up to x = 0.1. Read More

We report the discovery of a new diluted magnetic semiconductor, Li(Zn,Mn)P, in which charge and spin are introduced independently via lithium off-stoichiometry and the isovalent substitution of Mn2+ for Zn2+, respectively. Isostructural to (Ga,Mn)As, Li(Zn,Mn)P was found to be a p-type ferromagnetic semiconductor with excess Lithium providing charge doping. First principles calculations indicate that excess Li is favored to partially occupy the Zn site, leading to hole doping. Read More

We employ NMR techniques to investigate the nature of Mn spins in the I-II-V diluted magnetic semiconductor Li(Zn1-xMnx)P (x = 0.1, Curie temperature Tc = 25 K). We successfully identify the 7Li NMR signals arising from the Li sites adjacent to Mn2+, and probe the static and dynamic properties of Mn spins. Read More

We report the synthesis and characterization of a bulk diluted magnetic semiconductor (La1-xBax)(Zn1-xMnx)AsO (0 <= x <= 0.2) with a layered crystal structure identical to that of the "1111" FeAs superconductors. No ferromagnetic order occurs for (Zn,Mn) substitution in the parent compound LaZnAsO without charge doping. Read More

Diluted magnetic semiconductors (DMS) have received much attention due to its potential applications to spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since 1990s. The simultaneous spin and charge doping via hetero-valence (Ga3+,Mn2+) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Read More

We report a 75-As single crystal NMR investigation of LaFeAsO, the parent phase of a pnictide high Tc superconductor. We demonstrate that spin dynamics develop a strong two-fold anisotropy within each orthorhombic domain below the tetragonal-orthorhombic structural phase transition at T[TO]~156 K. This intermediate state with a dynamical breaking of the rotational symmetry freezes progressively into a spin density wave (SDW) below T[SDW]~142 K. Read More

Theory predicts the low-temperature magnetic excitations in spin ices consist of deconfined magnetic charges, or monopoles. A recent transverse-field (TF) muon spin rotation (muSR) experiment [S T Bramwell et al, Nature 461, 956 (2009)] reports results claiming to be consistent with the temperature and magnetic field dependence anticipated for monopole nucleation - the so-called second Wien effect. We demonstrate via a new series of muSR experiments in Dy_2Ti_2O_7 that such an effect is not observable in a TF muSR experiment. Read More

We have studied the magnetism in superconducting single crystals of EuFe2 As1.4 P0.6 by using the local probe techniques of zero-field muon spin rotation/relaxation and 151 Eu/57 Fe M\"ossbauer spec- troscopy. Read More

The responds of different common alkali halide crystals to alpha-rays and gamma-rays are tested in our research. It is found that only CsI(Na) crystals have significantly different waveforms between alpha and gamma scintillations, while others have not this phenomena. It is suggested that the fast light of CsI(Na) crystals arises from the recombination of free electrons with self-trapped holes of the host crystal CsI. Read More

The luminescent properties of CsI(Na) crystals are studied in this report. By using a TDS3054C oscilloscope with a sampling frequency of 5 GS/s, we find out that nuclear recoil signals are dominated by very fast light pulse with a decay time of ~20 ns, while {\gamma}-ray signals have a decay time of ~600 ns. The wavelength of nuclear recoil and {\gamma}-ray signals are also different. Read More

Impurity-induced magnetic order has been observed in many quasi-1D systems including doped variants of the spin-Peierls system CuGeO3. TiOCl is another quasi-1D quantum magnet with a spin-Peierls ground state, and the magnetic Ti sites of this system can be doped with non-magnetic Sc. To investigate the role of non-magnetic impurities in this system, we have performed both zero field and longitudinal field muSR experiments on polycrystalline Ti1-xScxOCl samples with x = 0, 0. Read More

We will examine the possible link between spin fluctuations and the superconducting mechanism in the iron-based high temperature superconductor Ba(Fe,Co)2As2 based on NMR and high pressure transport measurements. Read More

We report the first NMR investigation of spin dynamics in the overdoped non-superconducting regime of Ba(Fe[1-x]Co[x])2As2 up to x =0.26. We demonstrate that the absence of inter-band transitions with large momentum transfer Q(AF) ~ (pi, 0) between the hole and electron Fermi surfaces results in complete suppression of antiferromagnetic spin fluctuations for x > 0. Read More

We report comprehensive resistivity measurements of single crystalline samples of the Ba(Fe(1-x)Co(x))2As2 high Tc superconductor under hydrostatic pressure up to 2.75 GPa and over a broad concentration range, 0 < x < 0.099. Read More

We demonstrate that the anisotropy R of the paramagnetic spin fluctuations grows toward Tc at 75As sites in the optimally electron-doped superconductor Ba[(Fe0.92Co0.08)2]2As2, with stronger spin fluctuations along the c-axis. Read More

Unlike the parent phases of the iron-arsenide high Tc superconductors, undoped FeSe is not magnetically ordered and exhibits superconductivity with Tc~9K. Equally surprising is the fact that applied pressure dramatically enhances the modest Tc to ~37K. We investigate the electronic properties of FeSe using 77Se NMR to search for the key to the superconducting mechanism. Read More

We report a systematic investigation of Ba[Fe(1-x)Co(x)]2As2 based on transport and 75-As NMR measurements, and establish the electronic phase diagram. We demonstrate that doping progressively suppresses the uniform spin susceptibility and low frequency spin fluctuations. The optimum superconducting phase emerges at x_c~0. Read More

Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. Read More

We will probe the intrinsic behavior of spin susceptibility chi_(spin) in the LaFeAsO(1-x)F(x) superconductor (x ~ 0.1, Tc ~ 27K) using 19-F and 75-As NMR techniques. Our new results firmly establish the pseudo-gap behavior with Delta_(PG)/kB ~ 140K. Read More

We report an NMR investigation of the superconductivity in BaFe(2)As(2) induced by Co doping (Tc=22K). We demonstrate that Co atoms form an alloy with Fe atoms and donate carriers without creating localized moments. Our finding strongly suggests that the underlying physics of iron-pnictide superconductors is quite different from the widely accepted physical picture of high Tc cuprates as doped Mott insulators. Read More

The CoO$_{2}$ layers in sodium-cobaltates Na$_{x}$CoO$_{2}$ may be viewed as a spin $S=1/2$ triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high $T_{c}$ cuprates. We will present unequivocal $^{59}$Co NMR evidence that below $T_{CO}\sim51 K$, the insulating ground state of the itinerant antiferromagnet Na$_{0. Read More

The sodium cobaltate family (NaxCoO2) is unique among transition metal oxides because the Co sits on a triangular lattice and its valence can be tuned over a wide range by varying the Na concentration x. Up to now detailed modeling of the rich phenomenology (which ranges from unconventional superconductivity to enhanced thermopower) has been hampered by the difficulty of controlling pure phases. We discovered that certain Na concentrations are specially stable and are associated with superlattice ordering of the Na clusters. Read More

We report the first 17-O NMR studies of a triangular-lattice superconductor Na{1/3}CoO{2}-[4/3]H{2}O and the host material Na{x}CoO{2} (x=0.35 and 0.72). Read More

We probed the local electronic properties of the mixed-valent Co(+4-x) triangular-lattice in Na{x}CoO{2}-yH{2}O by 59-Co NMR. We observed two distinct types of Co sites for x>=1/2, but the valence seems averaged out for x~1/3. Local spin fluctuations exhibit qualitatively the same trend down to ~100 K regardless of the carrier-concentration x, and hence the nature of the electronic ground state. Read More

We report 323 hours of nearly uninterrupted time series photometric observations of the DBV star GD 358 acquired with the Whole Earth Telescope (WET) during May 23rd to June 8th, 2000. We acquired more than 232 000 independent measurements. We also report on 48 hours of time-series photometric observations in Aug 1996. Read More