F. KrauSS

F. KrauSS
Are you F. KrauSS?

Claim your profile, edit publications, add additional information:

Contact Details

Name
F. KrauSS
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (28)
 
High Energy Astrophysical Phenomena (23)
 
High Energy Physics - Experiment (12)
 
Astrophysics of Galaxies (5)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (1)
 
Cosmology and Nongalactic Astrophysics (1)

Publications Authored By F. KrauSS

2017Mar
Authors: M. L. Ahnen1, S. Ansoldi2, L. A. Antonelli3, C. Arcaro4, A. Babić5, B. Banerjee6, P. Bangale7, U. Barres de Almeida8, J. A. Barrio9, J. Becerra González10, W. Bednarek11, E. Bernardini12, A. Berti13, B. Biasuzzi14, A. Biland15, O. Blanch16, S. Bonnefoy17, G. Bonnoli18, F. Borracci19, T. Bretz20, R. Carosi21, A. Carosi22, A. Chatterjee23, P. Colin24, E. Colombo25, J. L. Contreras26, J. Cortina27, S. Covino28, P. Cumani29, P. Da Vela30, F. Dazzi31, A. De Angelis32, B. De Lotto33, E. de Oña Wilhelmi34, F. Di Pierro35, M. Doert36, A. Domínguez37, D. Dominis Prester38, D. Dorner39, M. Doro40, S. Einecke41, D. Eisenacher Glawion42, D. Elsaesser43, M. Engelkemeier44, V. Fallah Ramazani45, A. Fernández-Barral46, D. Fidalgo47, M. V. Fonseca48, L. Font49, C. Fruck50, D. Galindo51, R. J. García López52, M. Garczarczyk53, M. Gaug54, P. Giammaria55, N. Godinović56, D. Gora57, D. Guberman58, D. Hadasch59, A. Hahn60, T. Hassan61, M. Hayashida62, J. Herrera63, J. Hose64, D. Hrupec65, G. Hughes66, W. Idec67, K. Ishio68, K. Kodani69, Y. Konno70, H. Kubo71, J. Kushida72, D. Lelas73, E. Lindfors74, S. Lombardi75, F. Longo76, M. López77, P. Majumdar78, M. Makariev79, K. Mallot80, G. Maneva81, M. Manganaro82, K. Mannheim83, L. Maraschi84, M. Mariotti85, M. Martínez86, D. Mazin87, U. Menzel88, R. Mirzoyan89, A. Moralejo90, E. Moretti91, D. Nakajima92, V. Neustroev93, A. Niedzwiecki94, M. Nievas Rosillo95, K. Nilsson96, K. Nishijima97, K. Noda98, L. Nogués99, M. Nöthe100, S. Paiano101, J. Palacio102, D. Paneque103, R. Paoletti104, J. M. Paredes105, X. Paredes-Fortuny106, G. Pedaletti107, M. Peresano108, L. Perri109, M. Persic110, J. Poutanen111, P. G. Prada Moroni112, E. Prandini113, I. Puljak114, J. R. Garcia115, I. Reichardt116, W. Rhode117, M. Ribó118, J. Rico119, T. Saito120, K. Satalecka121, S. Schroeder122, T. Schweizer123, S. N. Shore124, A. Sillanpää125, J. Sitarek126, I. Šnidarić127, D. Sobczynska128, A. Stamerra129, M. Strzys130, T. Surić131, L. Takalo132, F. Tavecchio133, P. Temnikov134, T. Terzić135, D. Tescaro136, M. Teshima137, D. F. Torres138, N. Torres-Albà139, T. Toyama140, A. Treves141, G. Vanzo142, M. Vazquez Acosta143, I. Vovk144, J. E. Ward145, M. Will146, M. H. Wu147, F. Krauß148, R. Schulz149, M. Kadler150, J. Wilms151, E. Ros152, U. Bach153, T. Beuchert154, M. Langejahn155, C. Wendel156, N. Gehrels157, W. H. Baumgartner158, C. B. Markwardt159, C. Müller160, V. Grinberg161, T. Hovatta162, J. Magill163
Affiliations: 1ETH Zurich, Institute for Particle Physics, Zurich, Switzerland, 2Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, 3INAF - National Institute for Astrophysics, Roma, Italy, 4Dipartimento di Fisica ed Astronomia, Università di Padova and INFN sez. di Padova, Padova, Italy, 5Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 6Saha Institute of Nuclear Physics, HBNI, Kolkata, India, 7Max-Planck-Institut für Physik, München, Germany, 8Max-Planck-Institut für Physik, München, Germany, 9Grupo de Altas Energias, Universidad Complutense, Madrid, Madrid, Spain, 10Instituto de Astrofisica de Canarias, La Laguna, 11Division of Astrophysics, University of Lodz, Lodz, Poland, 12Deutsches Elektronen-Synchrotron, 13Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, 14Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, 15ETH Zurich, Institute for Particle Physics, Zurich, Switzerland, 16Institut de Fisica d'Altes Energies, 17Grupo de Altas Energias, Universidad Complutense, Madrid, Madrid, Spain, 18Dipartimento di Fisica, Università di Siena and INFN sez. di Pisa, Siena, Italy, 19Max-Planck-Institut für Physik, München, Germany, 20Institut für Theoretische Physik und Astrophysik - Fakultät für Physik und Astronomie - Universität Würzburg, Würzburg, Germany, 21Dipartimento di Fisica, Università di Siena and INFN sez. di Pisa, Siena, Italy, 22INAF - National Institute for Astrophysics, Roma, Italy, 23Saha Institute of Nuclear Physics, HBNI, Kolkata, India, 24Max-Planck-Institut für Physik, München, Germany, 25Instituto de Astrofisica de Canarias, La Laguna, 26Grupo de Altas Energias, Universidad Complutense, Madrid, Madrid, Spain, 27Institut de Fisica d'Altes Energies, 28INAF - National Institute for Astrophysics, Roma, Italy, 29Institut de Fisica d'Altes Energies, 30Dipartimento di Fisica, Università di Siena and INFN sez. di Pisa, Siena, Italy, 31Max-Planck-Institut für Physik, München, Germany, 32Dipartimento di Fisica ed Astronomia, Università di Padova and INFN sez. di Padova, Padova, Italy, 33Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, 34Institut de Ciencies de l'Espai, 35INAF - National Institute for Astrophysics, Roma, Italy, 36Technische Universität Dortmund, Dortmund, Germany, 37Grupo de Altas Energias, Universidad Complutense, Madrid, Madrid, Spain, 38Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 39Institut für Theoretische Physik und Astrophysik - Fakultät für Physik und Astronomie - Universität Würzburg, Würzburg, Germany, 40Dipartimento di Fisica ed Astronomia, Università di Padova and INFN sez. di Padova, Padova, Italy, 41Technische Universität Dortmund, Dortmund, Germany, 42Institut für Theoretische Physik und Astrophysik - Fakultät für Physik und Astronomie - Universität Würzburg, Würzburg, Germany, 43Technische Universität Dortmund, Dortmund, Germany, 44Technische Universität Dortmund, Dortmund, Germany, 45Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, Piikkiö, Finland, 46Institut de Fisica d'Altes Energies, 47Grupo de Altas Energias, Universidad Complutense, Madrid, Madrid, Spain, 48Grupo de Altas Energias, Universidad Complutense, Madrid, Madrid, Spain, 49Universitat Autònoma de Barcelona, Barcelona, Spain, 50Max-Planck-Institut für Physik, München, Germany, 51Universitat de Barcelona, Barcelona, Spain, 52Instituto de Astrofisica de Canarias, La Laguna, 53Deutsches Elektronen-Synchrotron, 54Universitat Autònoma de Barcelona, Barcelona, Spain, 55INAF - National Institute for Astrophysics, Roma, Italy, 56Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 57Deutsches Elektronen-Synchrotron, 58Institut de Fisica d'Altes Energies, 59Japanese MAGIC Consortium, Kyoto, Japan, 60Max-Planck-Institut für Physik, München, Germany, 61Institut de Fisica d'Altes Energies, 62Japanese MAGIC Consortium, Kyoto, Japan, 63Instituto de Astrofisica de Canarias, La Laguna, 64Max-Planck-Institut für Physik, München, Germany, 65Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 66ETH Zurich, Institute for Particle Physics, Zurich, Switzerland, 67Division of Astrophysics, University of Lodz, Lodz, Poland, 68Max-Planck-Institut für Physik, München, Germany, 69Japanese MAGIC Consortium, Kyoto, Japan, 70Japanese MAGIC Consortium, Kyoto, Japan, 71Japanese MAGIC Consortium, Kyoto, Japan, 72Japanese MAGIC Consortium, Kyoto, Japan, 73Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 74Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, Piikkiö, Finland, 75INAF - National Institute for Astrophysics, Roma, Italy, 76Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, 77Grupo de Altas Energias, Universidad Complutense, Madrid, Madrid, Spain, 78Saha Institute of Nuclear Physics, HBNI, Kolkata, India, 79Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria, 80Deutsches Elektronen-Synchrotron, 81Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria, 82Instituto de Astrofisica de Canarias, La Laguna, 83Institut für Theoretische Physik und Astrophysik - Fakultät für Physik und Astronomie - Universität Würzburg, Würzburg, Germany, 84INAF - National Institute for Astrophysics, Roma, Italy, 85Dipartimento di Fisica ed Astronomia, Università di Padova and INFN sez. di Padova, Padova, Italy, 86Institut de Fisica d'Altes Energies, 87Max-Planck-Institut für Physik, München, Germany, 88Max-Planck-Institut für Physik, München, Germany, 89Max-Planck-Institut für Physik, München, Germany, 90Institut de Fisica d'Altes Energies, 91Max-Planck-Institut für Physik, München, Germany, 92Japanese MAGIC Consortium, Kyoto, Japan, 93Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, Piikkiö, Finland, 94Division of Astrophysics, University of Lodz, Lodz, Poland, 95Grupo de Altas Energias, Universidad Complutense, Madrid, Madrid, Spain, 96Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, Piikkiö, Finland, 97Japanese MAGIC Consortium, Kyoto, Japan, 98Max-Planck-Institut für Physik, München, Germany, 99Institut de Fisica d'Altes Energies, 100Technische Universität Dortmund, Dortmund, Germany, 101Dipartimento di Fisica ed Astronomia, Università di Padova and INFN sez. di Padova, Padova, Italy, 102Institut de Fisica d'Altes Energies, 103Max-Planck-Institut für Physik, München, Germany, 104Dipartimento di Fisica, Università di Siena and INFN sez. di Pisa, Siena, Italy, 105Universitat de Barcelona, Barcelona, Spain, 106Universitat de Barcelona, Barcelona, Spain, 107Deutsches Elektronen-Synchrotron, 108Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, 109INAF - National Institute for Astrophysics, Roma, Italy, 110Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, 111Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, Piikkiö, Finland, 112Universita di Pisa, and INFN Pisa, Pisa, Italy, 113Dipartimento di Fisica ed Astronomia, Università di Padova and INFN sez. di Padova, Padova, Italy, 114Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 115Max-Planck-Institut für Physik, München, Germany, 116Dipartimento di Fisica ed Astronomia, Università di Padova and INFN sez. di Padova, Padova, Italy, 117Technische Universität Dortmund, Dortmund, Germany, 118Universitat de Barcelona, Barcelona, Spain, 119Institut de Fisica d'Altes Energies, 120Japanese MAGIC Consortium, Kyoto, Japan, 121Deutsches Elektronen-Synchrotron, 122Technische Universität Dortmund, Dortmund, Germany, 123Max-Planck-Institut für Physik, München, Germany, 124Universita di Pisa, and INFN Pisa, Pisa, Italy, 125Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, Piikkiö, Finland, 126Division of Astrophysics, University of Lodz, Lodz, Poland, 127Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 128Division of Astrophysics, University of Lodz, Lodz, Poland, 129INAF - National Institute for Astrophysics, Roma, Italy, 130Max-Planck-Institut für Physik, München, Germany, 131Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 132Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, Piikkiö, Finland, 133INAF - National Institute for Astrophysics, Roma, Italy, 134Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria, 135Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, 136Dipartimento di Fisica ed Astronomia, Università di Padova and INFN sez. di Padova, Padova, Italy, 137Max-Planck-Institut für Physik, München, Germany, 138ICREA and Institut de Ciencies de l'Espai, 139Universitat de Barcelona, Barcelona, Spain, 140Max-Planck-Institut für Physik, München, Germany, 141Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, 142Instituto de Astrofisica de Canarias, La Laguna, 143Instituto de Astrofisica de Canarias, La Laguna, 144Max-Planck-Institut für Physik, München, Germany, 145Institut de Fisica d'Altes Energies, 146Instituto de Astrofisica de Canarias, La Laguna, 147Institut de Ciencies de l'Espai, 148GRAPPA and Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands, 149ASTRON, the Netherlands Institute for Radio Astronomy, Dwingeloo, Netherlands, 150Institut für Theoretische Physik und Astrophysik - Fakultät für Physik und Astronomie - Universität Würzburg, Würzburg, Germany, 151Dr. Remeis Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg, Germany, 152Max-Planck-Institut für Radioastronomie, Bonn, Germany, 153Max-Planck-Institut für Radioastronomie, Bonn, Germany, 154Dr. Remeis Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg, Germany, 155Institut für Theoretische Physik und Astrophysik - Fakultät für Physik und Astronomie - Universität Würzburg, Würzburg, Germany, 156Institut für Theoretische Physik und Astrophysik - Fakultät für Physik und Astronomie - Universität Würzburg, Würzburg, Germany, 157NASA, Goddard Space Flight Center, Greenbelt, USA, 158NASA, Goddard Space Flight Center, Greenbelt, USA, 159NASA, Goddard Space Flight Center, Greenbelt, USA, 160Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, the Netherlands, 161Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, USA, 162Aalto University Metsähovi Radio Observatory, Kylmälä, Finland, 163Department of Physics and Department of Astronomy, University of Maryland, College Park, USA)

The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Read More

2017Feb
Authors: MAGIC Collaboration, M. L. Ahnen1, S. Ansoldi2, L. A. Antonelli3, P. Antoranz4, C. Arcaro5, A. Babic6, B. Banerjee7, P. Bangale8, U. Barres de Almeida9, J. A. Barrio10, W. Bednarek11, E. Bernardini12, A. Berti13, B. Biasuzzi14, A. Biland15, O. Blanch16, S. Bonnefoy17, G. Bonnoli18, F. Borracci19, T. Bretz20, S. Buson21, A. Carosi22, A. Chatterjee23, R. Clavero24, P. Colin25, E. Colombo26, J. L. Contreras27, J. Cortina28, S. Covino29, P. Da Vela30, F. Dazzi31, A. De Angelis32, B. De Lotto33, E. de Oña Wilhelmi34, F. Di Pierro35, M. Doert36, A. Domínguez37, D. Dominis Prester38, D. Dorner39, M. Doro40, S. Einecke41, D. Eisenacher Glawion42, D. Elsaesser43, M. Engelkemeier44, V. Fallah Ramazani45, A. Fernández-Barral46, D. Fidalgo47, M. V. Fonseca48, L. Font49, K. Frantzen50, C. Fruck51, D. Galindo52, R. J. García López53, M. Garczarczyk54, D. Garrido Terrats55, M. Gaug56, P. Giammaria57, N. Godinović58, D. Gora59, D. Guberman60, D. Hadasch61, A. Hahn62, M. Hayashida63, J. Herrera64, J. Hose65, D. Hrupec66, G. Hughes67, W. Idec68, K. Kodani69, Y. Konno70, H. Kubo71, J. Kushida72, A. La Barbera73, D. Lelas74, E. Lindfors75, S. Lombardi76, F. Longo77, M. López78, R. López-Coto79, P. Majumdar80, M. Makariev81, K. Mallot82, G. Maneva83, M. Manganaro84, N. Mankuzhiyil85, K. Mannheim86, L. Maraschi87, B. Marcote88, M. Mariotti89, M. Martínez90, D. Mazin91, U. Menzel92, J. M. Miranda93, R. Mirzoyan94, A. Moralejo95, E. Moretti96, D. Nakajima97, V. Neustroev98, A. Niedzwiecki99, M. Nievas Rosillo100, K. Nilsson101, K. Nishijima102, K. Noda103, L. Nogués104, S. Paiano105, J. Palacio106, M. Palatiello107, D. Paneque108, R. Paoletti109, J. M. Paredes110, X. Paredes-Fortuny111, G. Pedaletti112, M. Peresano113, L. Perri114, M. Persic115, J. Poutanen116, P. G. Prada Moroni117, E. Prandini118, I. Puljak119, J. R. Garcia120, I. Reichardt121, W. Rhode122, M. Ribó123, J. Rico124, T. Saito125, K. Satalecka126, S. Schroeder127, T. Schweizer128, S. N. Shore129, A. Sillanpää130, J. Sitarek131, I. Snidaric132, D. Sobczynska133, A. Stamerra134, M. Strzys135, T. Surić136, L. Takalo137, H. Takami138, F. Tavecchio139, P. Temnikov140, T. Terzić141, D. Tescaro142, M. Teshima143, D. F. Torres144, T. Toyama145, A. Treves146, G. Vanzo147, V. Verguilov148, I. Vovk149, J. E. Ward150, M. Will151, M. H. Wu152, R. Zanin153, Fermi-LAT collaboration154, :155, J. Becerra González156, B. Rani157, F. Krauss158, M. Perri159, F. Verrecchia160, R. Reinthal161
Affiliations: 1ETH Zurich, 2Università di Udine, INFN Trieste, 3INAF National Institute for Astrophysics, 4Università di Siena, INFN Pisa, 5Università di Padova and INFN, 6Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 7Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 8Max-Planck-Institut für Physik, 9Max-Planck-Institut für Physik, 10Universidad Complutense, 11University of Łódź, 12Deutsches Elektronen-Synchrotron, 13Università di Udine, INFN Trieste, 14Università di Udine, INFN Trieste, 15ETH Zurich, 16Institut de Fisica d'Altes Energies, 17Universidad Complutense, 18Università di Siena, INFN Pisa, 19Max-Planck-Institut für Physik, 20Universität Würzburg, 21Università di Padova and INFN, 22INAF National Institute for Astrophysics, 23Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 24Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 25Max-Planck-Institut für Physik, 26Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 27Universidad Complutense, 28Institut de Fisica d'Altes Energies, 29INAF National Institute for Astrophysics, 30Università di Siena, INFN Pisa, 31Max-Planck-Institut für Physik, 32Università di Padova and INFN, 33Università di Udine, INFN Trieste, 34Institute for Space Sciences, 35INAF National Institute for Astrophysics, 36Technische Universität Dortmund, 37Universidad Complutense, 38Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 39Universität Würzburg, 40Università di Padova and INFN, 41Technische Universität Dortmund, 42Universität Würzburg, 43Technische Universität Dortmund, 44Technische Universität Dortmund, 45Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, 46Institut de Fisica d'Altes Energies, 47Universidad Complutense, 48Universidad Complutense, 49Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, 50Technische Universität Dortmund, 51Max-Planck-Institut für Physik, 52Universitat de Barcelona, ICC, 53Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 54Deutsches Elektronen-Synchrotron, 55Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, 56Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, 57INAF National Institute for Astrophysics, 58Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 59Deutsches Elektronen-Synchrotron, 60Institut de Fisica d'Altes Energies, 61Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 62Max-Planck-Institut für Physik, 63Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 64Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 65Max-Planck-Institut für Physik, 66Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 67ETH Zurich, 68University of Łódź, 69Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 70Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 71Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 72Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 73INAF National Institute for Astrophysics, 74Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 75Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, 76INAF National Institute for Astrophysics, 77Università di Udine, INFN Trieste, 78Universidad Complutense, 79Institut de Fisica d'Altes Energies, 80Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 81Inst. for Nucl. Research and Nucl. Energy, 82Deutsches Elektronen-Synchrotron, 83Inst. for Nucl. Research and Nucl. Energy, 84Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 85Università di Udine, INFN Trieste, 86Universität Würzburg, 87INAF National Institute for Astrophysics, 88Universitat de Barcelona, ICC, 89Università di Padova and INFN, 90Institut de Fisica d'Altes Energies, 91Max-Planck-Institut für Physik, 92Max-Planck-Institut für Physik, 93Università di Siena, INFN Pisa, 94Max-Planck-Institut für Physik, 95Institut de Fisica d'Altes Energies, 96Max-Planck-Institut für Physik, 97Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 98Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, 99University of Łódź, 100Universidad Complutense, 101Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, 102Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 103Max-Planck-Institut für Physik, 104Institut de Fisica d'Altes Energies, 105Università di Padova and INFN, 106Institut de Fisica d'Altes Energies, 107Università di Udine, INFN Trieste, 108Max-Planck-Institut für Physik, 109Università di Siena, INFN Pisa, 110Universitat de Barcelona, ICC, 111Universitat de Barcelona, ICC, 112Deutsches Elektronen-Synchrotron, 113Università di Udine, INFN Trieste, 114INAF National Institute for Astrophysics, 115Università di Udine, INFN Trieste, 116Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, 117Università di Pisa, and INFN Pisa, 118ETH Zurich, 119Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 120Max-Planck-Institut für Physik, 121Università di Padova and INFN, 122Technische Universität Dortmund, 123Universitat de Barcelona, ICC, 124Institut de Fisica d'Altes Energies, 125Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 126Deutsches Elektronen-Synchrotron, 127Technische Universität Dortmund, 128Max-Planck-Institut für Physik, 129Università di Pisa, and INFN Pisa, 130Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, 131University of Łódź, 132Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 133University of Łódź, 134INAF National Institute for Astrophysics, 135Max-Planck-Institut für Physik, 136Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 137Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland, 138Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, 139INAF National Institute for Astrophysics, 140Inst. for Nucl. Research and Nucl. Energy, 141Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split and University of Zagreb, Croatia, 142Università di Padova and INFN, 143Max-Planck-Institut für Physik, 144ICREA and Institute for Space Sciences, 145Max-Planck-Institut für Physik, 146Università di Udine, INFN Trieste, 147Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 148Inst. for Nucl. Research and Nucl. Energy, 149Max-Planck-Institut für Physik, 150Institut de Fisica d'Altes Energies, 151Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 152Institute for Space Sciences, 153Universitat de Barcelona, ICC, 154Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 155Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 156Inst. de Astrofísica de Canarias, Universidad de La Laguna, Dpto. Astrofísica, 157NASA Goddard Space Flight Center, 158GRAPPA and Anton Pannekoek Institute for Astronomy, University of Amsterdam, 159INAF National Institute for Astrophysics, 160INAF National Institute for Astrophysics, 161Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland

We present the first detection of the nearby (z=0.084) low-luminosity BL Lac object 1ES 1741+196 in the very high energy (VHE: E$>$100 GeV) band. This object lies in a triplet of interacting galaxies. Read More

Quasi-simultaneous observations of the Flat Spectrum Radio Quasar PKS 2326-502 were carried out in the gamma-ray, X-ray, UV, optical, near-infrared, and radio bands. Thanks to these observations we are able to characterize the spectral energy distribution of the source during two flaring and one quiescent gamma-ray states. These data were used to constrain one-zone leptonic models of the spectral energy distributions of each flare and investigate the physical conditions giving rise to them. Read More

We compare four-- and five--flavour scheme predictions for $b$-associated production of $Z$ and Higgs bosons. The results are obtained with \Sherpa's MC@NLOimplementation for the four--flavour scheme, treating the $b$'s as massive, and with multijet merging at leading and next-to leading order for the five--flavour schemes. Comparison with data for $Z+b(\bar{b})$ production at the $7$ TeV LHC exhibit strengths and weaknesses of the different approaches and are used to validate predictions for $b$-associated Higgs-boson production at the 13 TeV Run II. Read More

2016Nov
Authors: K. Akiba1, M. Akbiyik2, M. Albrow3, M. Arneodo4, V. Avati5, J. Baechler6, O. Villalobos Baillie7, P. Bartalini8, J. Bartels9, S. Baur10, C. Baus11, W. Beaumont12, U. Behrens13, D. Berge14, M. Berretti15, E. Bossini16, R. Boussarie17, S. Brodsky18, M. Broz19, M. Bruschi20, P. Bussey21, W. Byczynski22, J. C. Cabanillas Noris23, E. Calvo Villar24, A. Campbell25, F. Caporale26, W. Carvalho27, G. Chachamis28, E. Chapon29, C. Cheshkov30, J. Chwastowski31, R. Ciesielski32, D. Chinellato33, A. Cisek34, V. Coco35, P. Collins36, J. G. Contreras37, B. Cox38, D. de Jesus Damiao39, P. Davis40, M. Deile41, D. D'Enterria42, D. Druzhkin43, B. Ducloué44, R. Dumps45, R. Dzhelyadin46, P. Dziurdzia47, M. Eliachevitch48, P. Fassnacht49, F. Ferro50, S. Fichet51, D. Figueiredo52, B. Field53, D. Finogeev54, R. Fiore55, J. Forshaw56, A. Gago Medina57, M. Gallinaro58, A. Granik59, G. von Gersdorff60, S. Giani61, K. Golec-Biernat62, V. P. Goncalves63, P. Göttlicher64, K. Goulianos65, J. -Y. Grosslord66, L. A. Harland-Lang67, H. Van Haevermaet68, M. Hentschinski69, R. Engel70, G. Herrera Corral71, J. Hollar72, L. Huertas73, D. Johnson74, I. Katkov75, O. Kepka76, M. Khakzad77, L. Kheyn78, V. Khachatryan79, V. A. Khoze80, S. Klein81, M. van Klundert82, F. Krauss83, A. Kurepin84, N. Kurepin85, K. Kutak86, E. Kuznetsova87, G. Latino88, P. Lebiedowicz89, B. Lenzi90, E. Lewandowska91, S. Liu92, A. Luszczak93, M. Luszczak94, J. D. Madrigal95, M. Mangano96, Z. Marcone97, C. Marquet98, A. D. Martin99, T. Martin100, M. I. Martinez Hernandez101, C. Martins102, C. Mayer103, R. Mc Nulty104, P. Van Mechelen105, R. Macula106, E. Melo da Costa107, T. Mertzimekis108, C. Mesropian109, M. Mieskolainen110, N. Minafra111, I. L. Monzon112, L. Mundim113, B. Murdaca114, M. Murray115, H. Niewiadowski116, J. Nystrand117, E. G. de Oliveira118, R. Orava119, S. Ostapchenko120, K. Osterberg121, A. Panagiotou122, A. Papa123, R. Pasechnik124, T. Peitzmann125, L. A. Perez Moreno126, T. Pierog127, J. Pinfold128, M. Poghosyan129, M. E. Pol130, W. Prado131, V. Popov132, M. Rangel133, A. Reshetin134, J. -P. Revol135, M. Rijssenbeek136, M. Rodriguez137, B. Roland138, C. Royon139, M. Ruspa140, M. Ryskin141, A. Sabio Vera142, G. Safronov143, T. Sako144, H. Schindler145, D. Salek146, K. Safarik147, M. Saimpert148, A. Santoro149, R. Schicker150, J. Seger151, S. Sen152, A. Shabanov153, W. Schafer154, G. Gil Da Silveira155, P. Skands156, R. Soluk157, A. van Spilbeeck158, R. Staszewski159, S. Stevenson160, W. J. Stirling161, M. Strikman162, A. Szczurek163, L. Szymanowski164, J. D. Tapia Takaki165, M. Tasevsky166, K. Taesoo167, C. Thomas168, S. R. Torres169, A. Tricomi170, M. Trzebinski171, D. Tsybychev172, N. Turini173, R. Ulrich174, E. Usenko175, J. Varela176, M. Lo Vetere177, A. Villatoro Tello178, A. Vilela Pereira179, D. Volyanskyy180, S. Wallon181, G. Wilkinson182, H. Wöhrmann183, K. C. Zapp184, Y. Zoccarato185
Affiliations: 1LHC Forward Physics Working Group, 2LHC Forward Physics Working Group, 3LHC Forward Physics Working Group, 4LHC Forward Physics Working Group, 5LHC Forward Physics Working Group, 6LHC Forward Physics Working Group, 7LHC Forward Physics Working Group, 8LHC Forward Physics Working Group, 9LHC Forward Physics Working Group, 10LHC Forward Physics Working Group, 11LHC Forward Physics Working Group, 12LHC Forward Physics Working Group, 13LHC Forward Physics Working Group, 14LHC Forward Physics Working Group, 15LHC Forward Physics Working Group, 16LHC Forward Physics Working Group, 17LHC Forward Physics Working Group, 18LHC Forward Physics Working Group, 19LHC Forward Physics Working Group, 20LHC Forward Physics Working Group, 21LHC Forward Physics Working Group, 22LHC Forward Physics Working Group, 23LHC Forward Physics Working Group, 24LHC Forward Physics Working Group, 25LHC Forward Physics Working Group, 26LHC Forward Physics Working Group, 27LHC Forward Physics Working Group, 28LHC Forward Physics Working Group, 29LHC Forward Physics Working Group, 30LHC Forward Physics Working Group, 31LHC Forward Physics Working Group, 32LHC Forward Physics Working Group, 33LHC Forward Physics Working Group, 34LHC Forward Physics Working Group, 35LHC Forward Physics Working Group, 36LHC Forward Physics Working Group, 37LHC Forward Physics Working Group, 38LHC Forward Physics Working Group, 39LHC Forward Physics Working Group, 40LHC Forward Physics Working Group, 41LHC Forward Physics Working Group, 42LHC Forward Physics Working Group, 43LHC Forward Physics Working Group, 44LHC Forward Physics Working Group, 45LHC Forward Physics Working Group, 46LHC Forward Physics Working Group, 47LHC Forward Physics Working Group, 48LHC Forward Physics Working Group, 49LHC Forward Physics Working Group, 50LHC Forward Physics Working Group, 51LHC Forward Physics Working Group, 52LHC Forward Physics Working Group, 53LHC Forward Physics Working Group, 54LHC Forward Physics Working Group, 55LHC Forward Physics Working Group, 56LHC Forward Physics Working Group, 57LHC Forward Physics Working Group, 58LHC Forward Physics Working Group, 59LHC Forward Physics Working Group, 60LHC Forward Physics Working Group, 61LHC Forward Physics Working Group, 62LHC Forward Physics Working Group, 63LHC Forward Physics Working Group, 64LHC Forward Physics Working Group, 65LHC Forward Physics Working Group, 66LHC Forward Physics Working Group, 67LHC Forward Physics Working Group, 68LHC Forward Physics Working Group, 69LHC Forward Physics Working Group, 70LHC Forward Physics Working Group, 71LHC Forward Physics Working Group, 72LHC Forward Physics Working Group, 73LHC Forward Physics Working Group, 74LHC Forward Physics Working Group, 75LHC Forward Physics Working Group, 76LHC Forward Physics Working Group, 77LHC Forward Physics Working Group, 78LHC Forward Physics Working Group, 79LHC Forward Physics Working Group, 80LHC Forward Physics Working Group, 81LHC Forward Physics Working Group, 82LHC Forward Physics Working Group, 83LHC Forward Physics Working Group, 84LHC Forward Physics Working Group, 85LHC Forward Physics Working Group, 86LHC Forward Physics Working Group, 87LHC Forward Physics Working Group, 88LHC Forward Physics Working Group, 89LHC Forward Physics Working Group, 90LHC Forward Physics Working Group, 91LHC Forward Physics Working Group, 92LHC Forward Physics Working Group, 93LHC Forward Physics Working Group, 94LHC Forward Physics Working Group, 95LHC Forward Physics Working Group, 96LHC Forward Physics Working Group, 97LHC Forward Physics Working Group, 98LHC Forward Physics Working Group, 99LHC Forward Physics Working Group, 100LHC Forward Physics Working Group, 101LHC Forward Physics Working Group, 102LHC Forward Physics Working Group, 103LHC Forward Physics Working Group, 104LHC Forward Physics Working Group, 105LHC Forward Physics Working Group, 106LHC Forward Physics Working Group, 107LHC Forward Physics Working Group, 108LHC Forward Physics Working Group, 109LHC Forward Physics Working Group, 110LHC Forward Physics Working Group, 111LHC Forward Physics Working Group, 112LHC Forward Physics Working Group, 113LHC Forward Physics Working Group, 114LHC Forward Physics Working Group, 115LHC Forward Physics Working Group, 116LHC Forward Physics Working Group, 117LHC Forward Physics Working Group, 118LHC Forward Physics Working Group, 119LHC Forward Physics Working Group, 120LHC Forward Physics Working Group, 121LHC Forward Physics Working Group, 122LHC Forward Physics Working Group, 123LHC Forward Physics Working Group, 124LHC Forward Physics Working Group, 125LHC Forward Physics Working Group, 126LHC Forward Physics Working Group, 127LHC Forward Physics Working Group, 128LHC Forward Physics Working Group, 129LHC Forward Physics Working Group, 130LHC Forward Physics Working Group, 131LHC Forward Physics Working Group, 132LHC Forward Physics Working Group, 133LHC Forward Physics Working Group, 134LHC Forward Physics Working Group, 135LHC Forward Physics Working Group, 136LHC Forward Physics Working Group, 137LHC Forward Physics Working Group, 138LHC Forward Physics Working Group, 139LHC Forward Physics Working Group, 140LHC Forward Physics Working Group, 141LHC Forward Physics Working Group, 142LHC Forward Physics Working Group, 143LHC Forward Physics Working Group, 144LHC Forward Physics Working Group, 145LHC Forward Physics Working Group, 146LHC Forward Physics Working Group, 147LHC Forward Physics Working Group, 148LHC Forward Physics Working Group, 149LHC Forward Physics Working Group, 150LHC Forward Physics Working Group, 151LHC Forward Physics Working Group, 152LHC Forward Physics Working Group, 153LHC Forward Physics Working Group, 154LHC Forward Physics Working Group, 155LHC Forward Physics Working Group, 156LHC Forward Physics Working Group, 157LHC Forward Physics Working Group, 158LHC Forward Physics Working Group, 159LHC Forward Physics Working Group, 160LHC Forward Physics Working Group, 161LHC Forward Physics Working Group, 162LHC Forward Physics Working Group, 163LHC Forward Physics Working Group, 164LHC Forward Physics Working Group, 165LHC Forward Physics Working Group, 166LHC Forward Physics Working Group, 167LHC Forward Physics Working Group, 168LHC Forward Physics Working Group, 169LHC Forward Physics Working Group, 170LHC Forward Physics Working Group, 171LHC Forward Physics Working Group, 172LHC Forward Physics Working Group, 173LHC Forward Physics Working Group, 174LHC Forward Physics Working Group, 175LHC Forward Physics Working Group, 176LHC Forward Physics Working Group, 177LHC Forward Physics Working Group, 178LHC Forward Physics Working Group, 179LHC Forward Physics Working Group, 180LHC Forward Physics Working Group, 181LHC Forward Physics Working Group, 182LHC Forward Physics Working Group, 183LHC Forward Physics Working Group, 184LHC Forward Physics Working Group, 185LHC Forward Physics Working Group

The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Read More

Higher-dimensional multi-gluon interactions affect essentially all effective Lagrangian analyses at the LHC. We show that, contrary to common lore, such operators are best constrained in multi-jet production. Our limit on the corresponding new physics scale in the multi-TeV range exceeds the typical reach of global dimension-6 Higgs and top analyses. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

Context. The majority of bright extragalactic gamma-ray sources are blazars. Only a few radio galaxies have been detected by Fermi/LAT. Read More

This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches. Read More

This report was prepared in the context of the LPCC "Electroweak Precision Measurements at the LHC WG" and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the $W$ boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. Read More

Higgs boson production in association with a $Z$-boson at the LHC is analysed, both in the Standard Model and in Simplified Model extensions for Dark Matter. We focus on $H\rightarrow$invisibles searches and show that loop-induced components for both the signal and background present phenomenologically relevant contributions to the $\mathcal{BR}(H\rightarrow\textit{inv})$ limits. In addition, the constraining power of this channel to Simplified Models for Dark Matter with scalar and pseudo-scalar mediators $\phi$ and $A$ is discussed and compared with non-collider constraints. Read More

This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators. Read More

Simultaneous broadband spectral and temporal studies of blazars are an important tool for investigating active galactic nuclei (AGN) jet physics. We study the spectral evolution between quiescent and flaring periods of 22 radio-loud AGN through multi-epoch, quasi-simultaneous broadband spectra. For many of these sources these are the first broadband studies. Read More

In this publication we consider particle production at a future circular hadron collider with 100 TeV centre of mass energy within the Standard Model, and in particular their QCD aspects. Accurate predictions for these processes pose severe theoretical challenges related to large hierarchies of scales and possible large multiplicities of final state particles. We investigate scaling patterns in multijet-production rates allowing to extrapolate predictions to very high final-state multiplicities. Read More

We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently-discovered very-high-energy (VHE, $E>$ 100 GeV) blazar S4 0954+65 ($z=0.368$) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February, 13/14, or MJD 57067) when the MAGIC telescope detected VHE $\gamma$-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of $1. Read More

The discovery of extraterrestrial very-high-energy neutrinos by the IceCube collaboration has launched a quest for the identification of their astrophysical sources. Gamma-ray blazars have been predicted to yield a cumulative neutrino signal exceeding the atmospheric background above energies of 100 TeV, assuming that both the neutrinos and the gamma-ray photons are produced by accelerated protons in relativistic jets. Since the background spectrum falls steeply with increasing energy, the individual events with the clearest signature of being of an extraterrestrial origin are those at PeV energies. Read More

Using high-resolution radio imaging with VLBI techniques, the TANAMI program has been observing the parsec-scale radio jets of southern (declination south of -30{\deg}) gamma-ray bright AGN simultaneously with Fermi/LAT monitoring of their gamma-ray emission. We present the radio and gamma-ray properties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright gamma-ray sources for this time range. Read More

Based on the knowledge of the QCD radiation pattern, observables to distinguish jets containing one and two $b$-hadrons are discussed. A simple method is used to combine pairs of the most sensitive observables, girth, number of charged tracks and the energy or momentum fraction of the leading $b$-hadron with respect to the jet, into one discriminator. Their efficiencies, on particle level, are estimated and found to improve the performance and the robustness of the observables in different momentum slices. Read More

2015Nov
Affiliations: 1Caltech, 2Radboud University Nijmegen, 3Caltech, 4IRAP Caltech, 5Caltech, 6Caltech, 7Universidad de Valparaiso, 8Caltech, 9Remeis-Observatory & ECAP, 10SSL UC Berkeley, 11DTU Space, 12SSL UC Berkeley, 13Remeis-Observatory & ECAP, 14Virgina Tech, 15Remeis-Observatory & ECAP, 16Columbia University, 17Caltech, 18Universtiy Wuerzburg, 19KIPAC, 20Remeis-Observatory & ECAP, 21KIPAC, 22Universita Roma Tre, 23Universita Roma Tre, 24UCSD, 25IRAP Caltech, 26GSFC, 27UCSD, 28JPL, 29JPL, 30Caltech, 31GSFC

We present simultaneous XMM-Newton and NuSTAR observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with sub-arcminute resolution at X-ray energies above 10 keV for the first time, but finds no evidence for an extended source or other off-nuclear point-sources. Read More

The Fermi/LAT instrument has detected about two thousands Extragalactic High Energy (E > 100 MeV) gamma-ray sources. One of the brightest is 3FGL 1603.9-4903, associated to the radio source PMN J1603-4904. Read More

We analyse the production of a Higgs boson in association with a Z boson at hadron colliders in the Standard Model and some simple extensions. We show how multi-jet merging algorithms at leading and next-to-leading order for the loop-induced gluon fusion and the Drell-Yan like quark-induced processes, respectively, improve the descriptions for various differential distributions, in particular those that involve the production of additional jets. The phenomenological studies focus on two relevant channels of Higgs boson decays, namely $H\rightarrow invisible$ and $H\rightarrow b\bar{b}$. Read More

The nearby active galaxy IC 310, located in the outskirts of the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Originally, the nucleus of IC 310 has been classified as a radio galaxy. However, studies of the multi-wavelength emission showed several properties similarly to those found from blazars as well as radio galaxies. Read More

The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of Active Galactic Nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Read More

The ATLAS collaboration recently reported an excess of events in the high invariant mass tail of reconstructed di-boson events. We investigate their analysis and point to possible subtleties and improvements in the jet substructure implementation and data-driven background estimates. Read More

2015Aug
Authors: C. J. Clark, H. J. Pletsch, J. Wu, L. Guillemot, M. Ackermann, B. Allen, A. de Angelis, C. Aulbert, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, R. Bellazzini, E. Bissaldi, O. Bock, R. Bonino, E. Bottacini, T. J. Brandt, J. Bregeon, P. Bruel, S. Buson, G. A. Caliandro, R. A. Cameron, M. Caragiulo, P. A. Caraveo, C. Cecchi, D. J. Champion, E. Charles, A. Chekhtman, J. Chiang, G. Chiaro, S. Ciprini, R. Claus, J. Cohen-Tanugi, A. Cuéllar, S. Cutini, F. D'Ammando, R. Desiante, P. S. Drell, H. B. Eggenstein, C. Favuzzi, H. Fehrmann, E. C. Ferrara, W. B. Focke, A. Franckowiak, P. Fusco, F. Gargano, D. Gasparrini, N. Giglietto, F. Giordano, T. Glanzman, G. Godfrey, I. A. Grenier, J. E. Grove, S. Guiriec, A. K. Harding, E. Hays, J. W. Hewitt, A. B. Hill, D. Horan, X. Hou, T. Jogler, A. S. Johnson, G. Jóhannesson, M. Kramer, F. Krauss, M. Kuss, H. Laffon, S. Larsson, L. Latronico, J. Li, L. Li, F. Longo, F. Loparco, M. N. Lovellette, P. Lubrano, B. Machenschalk, A. Manfreda, M. Marelli, M. Mayer, M. N. Mazziotta, P. F. Michelson, T. Mizuno, M. E. Monzani, A. Morselli, I. V. Moskalenko, S. Murgia, E. Nuss, T. Ohsugi, M. Orienti, E. Orlando, F. de Palma, D. Paneque, M. Pesce-Rollins, F. Piron, G. Pivato, S. Rainò, R. Rando, M. Razzano, A. Reimer, P. M. Saz Parkinson, M. Schaal, A. Schulz, C. Sgrò, E. J. Siskind, F. Spada, G. Spandre, P. Spinelli, D. J. Suson, H. Takahashi, J. B. Thayer, L. Tibaldo, P. Torne, D. F. Torres, G. Tosti, E. Troja, G. Vianello, K. S. Wood, M. Wood, M. Yassine

We report the discovery of PSR J1906+0722, a gamma-ray pulsar detected as part of a blind survey of unidentified Fermi Large Area Telescope (LAT) sources being carried out on the volunteer distributed computing system, Einstein@Home. This newly discovered pulsar previously appeared as the most significant remaining unidentified gamma-ray source without a known association in the second Fermi-LAT source catalog (2FGL) and was among the top ten most significant unassociated sources in the recent third catalog (3FGL). PSR J1906+0722 is a young, energetic, isolated pulsar, with a spin frequency of $8. Read More

We study a thermally induced spin flip of an electron spin located in a semiconductor quantum dot. This interesting effect arises from an intriguing interplay between the Zeeman coupling to an external magnetic field and the hyperfine interaction with the surrounding nuclear spins. By considering a minimal model, we explain the main mechanism driving this spin flip and analyze its dependence on the strength of the external magnetic field, the number of nuclear spins and the ratio of the electron and nuclear Zeeman energies, respectively. Read More

Since the discovery of a neutrino flux in excess of the atmospheric background by the IceCube Collaboration, searches for the astrophysical sources have been ongoing. Due to the steeply falling background towards higher energies, the PeV events detected in three years of IceCube data are the most likely ones to be of extraterrestrial origin. Even excluding the PeV events detected so far, the neutrino flux is well above the atmospheric background, so it is likely that a number of sub-PeV events originate from the same astrophysical sources that produce the PeV events. Read More

IC 310 has recently been identified as a gamma-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of violent outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over 2 orders of magnitude. Read More

2015Jan
Authors: ANTARES Collaboration, S. Adrián-Martínez, A. Albert, M. André, G. Anton, M. Ardid, J. -J. Aubert, B. Baret, J. Barrios, S. Basa, V. Bertin, S. Biagi, C. Bogazzi, R. Bormuth, M. Bou-Cabo, M. C. Bouwhuis, R. Bruijn, J. Brunner, J. Busto, A. Capone, L. Caramete, J. Carr, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, P. Coyle, A. Creusot, G. De Rosa, I. Dekeyser, A. Deschamps, G. De Bonis, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, A. Dumas, T. Eberl, A. Enzenhöfer, S. Escoffier, K. Fehn, I. Felis, P. Fermani, F. Folger, L. A. Fusco, S. Galatà, P. Gay, S. Geißelsöder, K. Geyer, V. Giordano, A. Gleixner, J. P. Gómez-González, R. Gracia-Ruiz, K. Graf, G. Guillard, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernández-Rey, A. Herrero, J. Hößl, J. Hofestädt, C. Hugon, C. W James, M. de Jong, O. Kalekin, U. Katz, D. Kießling, P. Kooijman, A. Kouchner, V. Kulikovskiy, R. Lahmann, D. Lefèvre, E. Leonora, H. Loehner, S. Loucatos, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martínez-Mora, S. Martini, A. Mathieu, T. Michael, P. Migliozzi, M. Neff, E. Nezri, D. Palioselitis, G. E. Păvălaş, C. Pellegrino, C. Perrina, P. Piattelli, V. Popa, T. Pradier, C. Racca, G. Riccobene, R. Richter, K. Roensch, A. Rostovtsev, M. Saldaña, D. F. E. Samtleben, A. Sánchez-Losa, M. Sanguineti, P. Sapienza, J. Schmid, J. Schnabel, S. Schulte, F. Schüssler, T. Seitz, C. Sieger, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, Y. Tayalati, A. Trovato, M. Tselengidou, C. Tönnis, B. Vallage, C. Vallée, V. Van Elewyck, E. Visser, D. Vivolo, S. Wagner, E. de Wolf, H. Yepes, J. D. Zornoza, J. Zúñiga, TANAMI Collaboration, :, F. Krauß, M. Kadler, K. Mannheim, R. Schulz, J. Trüstedt, J. Wilms, R. Ojha, E. Ros, W. Baumgartner, T. Beuchert, J. Blanchard, C. Bürkel, B. Carpenter, P. G. Edwards, D. Eisenacher Glawion, D. Elsässer, U. Fritsch, N. Gehrels, C. Gräfe, C. Großberger, H. Hase, S. Horiuchi, A. Kappes, A. Kreikenbohm, I. Kreykenbohm, M. Langejahn, K. Leiter, E. Litzinger, J. E. J. Lovell, C. Müller, C. Phillips, C. Plötz, J. Quick, T. Steinbring, J. Stevens, D. J. Thompson, A. K. Tzioumis

The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Read More

Multiwavelength observations have revealed the highly unusual properties of the gamma-ray source PMN J1603-4904, which are difficult to reconcile with any other well established gamma-ray source class. The object is either a very atypical blazar or compact jet source seen at a larger angle to the line of sight. In order to determine the physical origin of the high-energy emission processes in PMN J1603-4904, we study the X-ray spectrum in detail. Read More

This is the write-up of the theory keynote talk on the Top2014 conference in Cannes, France. Read More

2014Dec
Authors: MAGIC Collaboration, J. Aleksić1, S. Ansoldi2, L. A. Antonelli3, P. Antoranz4, A. Babic5, P. Bangale6, J. A. Barrio7, J. Becerra González8, W. Bednarek9, E. Bernardini10, B. Biasuzzi11, A. Biland12, O. Blanch13, S. Bonnefoy14, G. Bonnoli15, F. Borracci16, T. Bretz17, E. Carmona18, A. Carosi19, P. Colin20, E. Colombo21, J. L. Contreras22, J. Cortina23, S. Covino24, P. Da Vela25, F. Dazzi26, A. De Angelis27, G. De Caneva28, B. De Lotto29, E. de Oña Wilhelmi30, C. Delgado Mendez31, D. Dominis Prester32, D. Dorner33, M. Doro34, S. Einecke35, D. Eisenacher36, D. Elsaesser37, M. V. Fonseca38, L. Font39, K. Frantzen40, C. Fruck41, D. Galindo42, R. J. García López43, M. Garczarczyk44, D. Garrido Terrats45, M. Gaug46, N. Godinović47, A. González Muñoz48, S. R. Gozzini49, D. Hadasch50, Y. Hanabata51, M. Hayashida52, J. Herrera53, D. Hildebrand54, J. Hose55, D. Hrupec56, W. Idec57, V. Kadenius58, H. Kellermann59, K. Kodani60, Y. Konno61, J. Krause62, H. Kubo63, J. Kushida64, A. La Barbera65, D. Lelas66, N. Lewandowska67, E. Lindfors68, S. Lombardi69, F. Longo70, M. López71, R. López-Coto72, A. López-Oramas73, E. Lorenz74, I. Lozano75, M. Makariev76, K. Mallot77, G. Maneva78, N. Mankuzhiyil79, K. Mannheim80, L. Maraschi81, B. Marcote82, M. Mariotti83, M. Martínez84, D. Mazin85, U. Menzel86, J. M. Miranda87, R. Mirzoyan88, A. Moralejo89, P. Munar-Adrover90, D. Nakajima91, A. Niedzwiecki92, K. Nilsson93, K. Nishijima94, K. Noda95, R. Orito96, A. Overkemping97, S. Paiano98, M. Palatiello99, D. Paneque100, R. Paoletti101, J. M. Paredes102, X. Paredes-Fortuny103, M. Persic104, J. Poutanen105, P. G. Prada Moroni106, E. Prandini107, I. Puljak108, R. Reinthal109, W. Rhode110, M. Ribó111, J. Rico112, J. Rodriguez Garcia113, S. Rügamer114, T. Saito115, K. Saito116, K. Satalecka117, V. Scalzotto118, V. Scapin119, C. Schultz120, T. Schweizer121, S. N. Shore122, A. Sillanpää123, J. Sitarek124, I. Snidaric125, D. Sobczynska126, F. Spanier127, V. Stamatescu128, A. Stamerra129, T. Steinbring130, J. Storz131, M. Strzys132, L. Takalo133, H. Takami134, F. Tavecchio135, P. Temnikov136, T. Terzić137, D. Tescaro138, M. Teshima139, J. Thaele140, O. Tibolla141, D. F. Torres142, T. Toyama143, A. Treves144, M. Uellenbeck145, P. Vogler146, R. Zanin147, M. Kadler148, R. Schulz149, E. Ros150, U. Bach151, F. Krauß152, J. Wilms153
Affiliations: 1IFAE, Campus UAB, E-08193 Bellaterra, Spain, 2Università di Udine, and INFN Trieste, I-33100 Udine, Italy, 3INAF National Institute for Astrophysics, I-00136 Rome, Italy, 4Università di Siena, and INFN Pisa, I-53100 Siena, Italy, 5Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia, 6Max-Planck-Institut für Physik, D-80805 München, Germany, 7Universidad Complutense, E-28040 Madrid, Spain, 8Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain, 9University of Łódź, PL-90236 Lodz, Poland, 10Deutsches Elektronen-Synchrotron, 11Università di Udine, and INFN Trieste, I-33100 Udine, Italy, 12ETH Zurich, CH-8093 Zurich, Switzerland, 13IFAE, Campus UAB, E-08193 Bellaterra, Spain, 14Universidad Complutense, E-28040 Madrid, Spain, 15INAF National Institute for Astrophysics, I-00136 Rome, Italy, 16Max-Planck-Institut für Physik, D-80805 München, Germany, 17Universität Würzburg, D-97074 Würzburg, Germany, 18Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain, 19INAF National Institute for Astrophysics, I-00136 Rome, Italy, 20Max-Planck-Institut für Physik, D-80805 München, Germany, 21Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain, 22Universidad Complutense, E-28040 Madrid, Spain, 23IFAE, Campus UAB, E-08193 Bellaterra, Spain, 24INAF National Institute for Astrophysics, I-00136 Rome, Italy, 25Università di Siena, and INFN Pisa, I-53100 Siena, Italy, 26Max-Planck-Institut für Physik, D-80805 München, Germany, 27Università di Udine, and INFN Trieste, I-33100 Udine, Italy, 28Deutsches Elektronen-Synchrotron, 29Università di Udine, and INFN Trieste, I-33100 Udine, Italy, 30Institute of Space Sciences, E-08193 Barcelona, Spain, 31Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain, 32Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia, 33Universität Würzburg, D-97074 Würzburg, Germany, 34Università di Padova and INFN, I-35131 Padova, Italy, 35Technische Universität Dortmund, D-44221 Dortmund, Germany, 36Universität Würzburg, D-97074 Würzburg, Germany, 37Universität Würzburg, D-97074 Würzburg, Germany, 38Universidad Complutense, E-28040 Madrid, Spain, 39Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain, 40Technische Universität Dortmund, D-44221 Dortmund, Germany, 41Max-Planck-Institut für Physik, D-80805 München, Germany, 42Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain, 43Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain, 44Deutsches Elektronen-Synchrotron, 45Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain, 46Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain, 47Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia, 48IFAE, Campus UAB, E-08193 Bellaterra, Spain, 49Deutsches Elektronen-Synchrotron, 50Institute of Space Sciences, E-08193 Barcelona, Spain, 51Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 52Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 53Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain, 54ETH Zurich, CH-8093 Zurich, Switzerland, 55Max-Planck-Institut für Physik, D-80805 München, Germany, 56Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia, 57University of Łódź, PL-90236 Lodz, Poland, 58Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland, 59Max-Planck-Institut für Physik, D-80805 München, Germany, 60Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 61Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 62Max-Planck-Institut für Physik, D-80805 München, Germany, 63Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 64Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 65INAF National Institute for Astrophysics, I-00136 Rome, Italy, 66Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia, 67Universität Würzburg, D-97074 Würzburg, Germany, 68Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland, 69INAF National Institute for Astrophysics, I-00136 Rome, Italy, 70Università di Udine, and INFN Trieste, I-33100 Udine, Italy, 71Universidad Complutense, E-28040 Madrid, Spain, 72IFAE, Campus UAB, E-08193 Bellaterra, Spain, 73IFAE, Campus UAB, E-08193 Bellaterra, Spain, 74Max-Planck-Institut für Physik, D-80805 München, Germany, 75Universidad Complutense, E-28040 Madrid, Spain, 76Inst. for Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria, 77Deutsches Elektronen-Synchrotron, 78Inst. for Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria, 79Università di Udine, and INFN Trieste, I-33100 Udine, Italy, 80Universität Würzburg, D-97074 Würzburg, Germany, 81INAF National Institute for Astrophysics, I-00136 Rome, Italy, 82Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain, 83Università di Padova and INFN, I-35131 Padova, Italy, 84IFAE, Campus UAB, E-08193 Bellaterra, Spain, 85Max-Planck-Institut für Physik, D-80805 München, Germany, 86Max-Planck-Institut für Physik, D-80805 München, Germany, 87Università di Siena, and INFN Pisa, I-53100 Siena, Italy, 88Max-Planck-Institut für Physik, D-80805 München, Germany, 89IFAE, Campus UAB, E-08193 Bellaterra, Spain, 90Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain, 91Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 92University of Łódź, PL-90236 Lodz, Poland, 93Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland, 94Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 95Max-Planck-Institut für Physik, D-80805 München, Germany, 96Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 97Technische Universität Dortmund, D-44221 Dortmund, Germany, 98Università di Padova and INFN, I-35131 Padova, Italy, 99Università di Udine, and INFN Trieste, I-33100 Udine, Italy, 100Max-Planck-Institut für Physik, D-80805 München, Germany, 101Università di Siena, and INFN Pisa, I-53100 Siena, Italy, 102Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain, 103Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain, 104Università di Udine, and INFN Trieste, I-33100 Udine, Italy, 105Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland, 106Università di Pisa, and INFN Pisa, I-56126 Pisa, Italy, 107ETH Zurich, CH-8093 Zurich, Switzerland, 108Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia, 109Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland, 110Technische Universität Dortmund, D-44221 Dortmund, Germany, 111Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain, 112IFAE, Campus UAB, E-08193 Bellaterra, Spain, 113Max-Planck-Institut für Physik, D-80805 München, Germany, 114Universität Würzburg, D-97074 Würzburg, Germany, 115Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 116Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 117Universidad Complutense, E-28040 Madrid, Spain, 118Università di Padova and INFN, I-35131 Padova, Italy, 119Universidad Complutense, E-28040 Madrid, Spain, 120Università di Padova and INFN, I-35131 Padova, Italy, 121Max-Planck-Institut für Physik, D-80805 München, Germany, 122Università di Pisa, and INFN Pisa, I-56126 Pisa, Italy, 123Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland, 124IFAE, Campus UAB, E-08193 Bellaterra, Spain, 125Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia, 126University of Łódź, PL-90236 Lodz, Poland, 127Universität Würzburg, D-97074 Würzburg, Germany, 128IFAE, Campus UAB, E-08193 Bellaterra, Spain, 129INAF National Institute for Astrophysics, I-00136 Rome, Italy, 130Universität Würzburg, D-97074 Würzburg, Germany, 131Universität Würzburg, D-97074 Würzburg, Germany, 132Max-Planck-Institut für Physik, D-80805 München, Germany, 133Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland, 134Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan, 135INAF National Institute for Astrophysics, I-00136 Rome, Italy, 136Inst. for Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria, 137Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia, 138Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain, 139Max-Planck-Institut für Physik, D-80805 München, Germany, 140Technische Universität Dortmund, D-44221 Dortmund, Germany, 141Universität Würzburg, D-97074 Würzburg, Germany, 142ICREA and Institute of Space Sciences, E-08193 Barcelona, Spain, 143Max-Planck-Institut für Physik, D-80805 München, Germany, 144Università dell'Insubria and INFN Milano Bicocca, Como, I-22100 Como, Italy, 145Technische Universität Dortmund, D-44221 Dortmund, Germany, 146ETH Zurich, CH-8093 Zurich, Switzerland, 147Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain, 148Universität Würzburg, D-97074 Würzburg, Germany, 149Universität Würzburg, D-97074 Würzburg, Germany, 150Max-Planck-Institut für Radioastronomie, D-53121 Bonn, German, 151Max-Planck-Institut für Radioastronomie, D-53121 Bonn, German, 152Universität Würzburg, D-97074 Würzburg, Germany, 153Dr. Remeis-Sternwarte Bamberg, Astronomisches Institut der Universität Erlangen-Nürnberg, ECAP, D-96049 Bamberg, Germany

Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry, but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Read More

We show that the X-ray line flux of the Mn Kalpha line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two 3D explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two white dwarfs. Read More

In the upcoming LHC run we will be able to probe the structure ofthe loop--induced Higgs--gluon coupling through kinematics. First, we establish state-of-the-art simulations with up to two jets to next-to-leading order including top mass effects. They allow us to search for deviations from the low-energy limits in boosted Higgs production. Read More

Searches for multi-Higgs final states allow to constrain parameters of the SM (or extensions thereof) that directly relate to the mechanism of electroweak symmetry breaking. Multi-Higgs production cross sections, however, are small and the phenomenologically accessible final states are challenging to isolate in the busy multi-jet hadron collider environment of the LHC run 2. This makes the necessity to extend the list of potentially observable production mechanisms obvious. Read More

The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Due to the steeply falling atmospheric background spectrum, events at PeV energies are most likely of extraterrestrial origin. We present the multiwavelength properties of the six radio brightest blazars positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Read More

2014May
Affiliations: 1conveners, 2conveners, 3conveners, 4conveners, 5conveners, 6conveners, 7conveners, 8conveners, 9conveners, 10conveners, 11conveners, 12conveners, 13conveners, 14conveners, 15conveners, 16conveners, 17conveners, 18conveners, 19conveners, 20conveners, 21conveners, 22conveners, 23conveners, 24conveners, 25conveners, 26conveners, 27conveners, 28conveners, 29conveners, 30conveners, 31conveners, 32conveners, 33conveners, 34conveners, 35conveners, 36conveners, 37conveners, 38conveners, 39conveners, 40conveners, 41conveners, 42conveners, 43conveners, 44conveners, 45conveners, 46conveners, 47conveners, 48conveners, 49conveners, 50conveners, 51conveners, 52conveners, 53conveners, 54conveners, 55conveners, 56conveners, 57conveners, 58conveners, 59conveners, 60conveners, 61conveners, 62conveners, 63conveners, 64conveners, 65conveners, 66conveners, 67conveners, 68conveners, 69conveners, 70conveners, 71conveners, 72conveners, 73conveners, 74conveners, 75conveners, 76conveners, 77conveners, 78conveners, 79conveners, 80conveners

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

Triple gauge boson hadroproduction, in particular the production of three $W$-bosons at the LHC, is considered at next-to leading order accuracy in QCD. The NLO matrix elements are combined with parton showers. Multijet merging is invoked such that NLO matrix elements with one additional jet are also included. Read More

Single and multiple emission of electroweak gauge bosons and in particular of W bosons is discussed in the parton shower language. Algorithms and observables for the reconstruction of both leptonically and hadronically decaying W bosons inside light quark jets are compared, and they are applied to a study of how emission rates of W bosons in light-jet events at the LHC could be measured. Read More

We present differential cross sections for the production of top-quark pairs in conjunction with up to two jets, computed at next-to leading order in perturbative QCD and consistently merged with a parton shower in the Sherpa+OpenLoops framework. Top quark decays including spin correlation effects are taken into account at leading order accuracy. The calculation yields a unified description of top-pair plus multi-jet production, and detailed results are presented for various key observables at the Large Hadron Collider. Read More

Uncertainties in the simulation of Higgs boson production with up to two jets at next-to leading order accuracy are investigated. Traditional uncertainty estimates based on scale variations are extended employing different functional forms for the central scale, and the impact of details in the implementation of the parton shower is discussed. Read More

We investigate the nature and classification of PMNJ1603-4904, a bright radio source close to the Galactic plane, which is associated with one of the brightest hard-spectrum gamma-ray sources detected by Fermi/LAT. It has previously been classified as a low-peaked BL Lac object based on its broadband emission and the absence of optical emission lines. Optical measurements, however, suffer strongly from extinction and the absence of pronounced short-time gamma-ray variability over years of monitoring is unusual for a blazar. Read More

The merging of matrix elements and parton showers is an established calculational tool for the description of multi-jet final states at hadron colliders. These methods have recently been promoted to next-to-leading order accuracy in the description of hard well separated jets. This talk introduces such a method and discusses its application to phenomenologically relevant signal and background processes. Read More

We present precise predictions for four-lepton plus jets production at the LHC obtained within the fully automated Sherpa+OpenLoops framework. Off-shell intermediate vector bosons and related interferences are consistently included using the complex-mass scheme. Four-lepton plus 0- and 1-jet final states are described at NLO accuracy, and the precision of the simulation is further increased by squared quark-loop NNLO contributions in the gg -> 4l, gg -> 4l+g, gq -> 4l+q, and qq -> 4l+g channels. Read More

2013Aug
Authors: M. Bicer, H. Duran Yildiz, I. Yildiz, G. Coignet, M. Delmastro, T. Alexopoulos, C. Grojean, S. Antusch, T. Sen, H. -J. He, K. Potamianos, S. Haug, A. Moreno, A. Heister, V. Sanz, G. Gomez-Ceballos, M. Klute, M. Zanetti, L. -T. Wang, M. Dam, C. Boehm, N. Glover, F. Krauss, A. Lenz, M. Syphers, C. Leonidopoulos, V. Ciulli, P. Lenzi, G. Sguazzoni, M. Antonelli, M. Boscolo, U. Dosselli, O. Frasciello, C. Milardi, G. Venanzoni, M. Zobov, J. van der Bij, M. de Gruttola, D. -W. Kim, M. Bachtis, A. Butterworth, C. Bernet, C. Botta, F. Carminati, A. David, D. d'Enterria, L. Deniau, G. Ganis, B. Goddard, G. Giudice, P. Janot, J. M. Jowett, C. Lourenco, L. Malgeri, E. Meschi, F. Moortgat, P. Musella, J. A. Osborne, L. Perrozzi, M. Pierini, L. Rinolfi, A. de Roeck, J. Rojo, G. Roy, A. Sciaba, A. Valassi, C. S. Waaijer, J. Wenninger, H. Woehri, F. Zimmermann, A. Blondel, M. Koratzinos, P. Mermod, Y. Onel, R. Talman, E. Castaneda Miranda, E. Bulyak, D. Porsuk, D. Kovalskyi, S. Padhi, P. Faccioli, J. R. Ellis, M. Campanelli, Y. Bai, M. Chamizo, R. B. Appleby, H. Owen, H. Maury Cuna, C. Gracios, G. A. Munoz-Hernandez, L. Trentadue, E. Torrente-Lujan, S. Wang, D. Bertsche, A. Gramolin, V. Telnov, M. Kado, P. Petroff, P. Azzi, O. Nicrosini, F. Piccinini, G. Montagna, F. Kapusta, S. Laplace, W. da Silva, N. Gizani, N. Craig, T. Han, C. Luci, B. Mele, L. Silvestrini, M. Ciuchini, R. Cakir, R. Aleksan, F. Couderc, S. Ganjour, E. Lancon, E. Locci, P. Schwemling, M. Spiro, C. Tanguy, J. Zinn-Justin, S. Moretti, M. Kikuchi, H. Koiso, K. Ohmi, K. Oide, G. Pauletta, R. Ruiz de Austri, M. Gouzevitch, S. Chattopadhyay

The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e- collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the t-tbar threshold and beyond. Read More

The nearby active galaxy IC 310 (z=0.019), located in the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Very recently, a blazar-like compact radio jet has been found by parsec-scale VLBI imaging. Read More

2013Jul
Authors: The LHC Higgs Cross Section Working Group, S. Heinemeyer1, C. Mariotti2, G. Passarino3, R. Tanaka4, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More