F. J. Botella - Valencia University & Valencia University, IFIC

F. J. Botella
Are you F. J. Botella?

Claim your profile, edit publications, add additional information:

Contact Details

Name
F. J. Botella
Affiliation
Valencia University & Valencia University, IFIC
City
Valencia
Country
Spain

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (44)
 
High Energy Physics - Experiment (11)

Publications Authored By F. J. Botella

2017Mar
Affiliations: 1Lisbon, IST, 2Valencia U., IFIC & Valencia U., 3Lisbon, CFTP & Lisbon, IST, 4Valencia U., IFIC & Valencia U., 5Lisbon, CFTP & Lisbon, IST

We propose a class of Two Higgs Doublet Models where there are Flavour Changing Neutral Currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models, one can have simultaneously FCNC in the up and down sectors, in contrast to the situation encountered in BGL models. The intensity of FCNC is analysed and it is shown that in this class of models one can respect all the strong constraints from experiment without unnatural fine-tuning. Read More

Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Lambda baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. Read More

2016Dec

In the presence of quantum gravity fluctuations (space-time foam), the CPT operator may be ill-defined. Its perturbative treatment leads to a modification of the Einstein-Podolsky-Rosen correlation of the neutral meson system by adding an Entanglement-weakening term of the wrong exchange symmetry, the $\omega$-effect. In the current paper we identify how to probe the complex $\omega$ in the entangled $B_d$-system using Flavour(f)-CP(g) eigenstate decay channels: the connection between the Intensities for the two time-ordered decays (f, g) and (g, f) is lost. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a single flavour symmetry G, together with three $Q = - 1/3$ quarks, three $Q = 2/3$ quarks, as well as a complex singlet scalar. The symmetry G is extended to the additional fields and it is an exact symmetry of the Lagrangian, only spontaneously broken by the vacuum. Specific examples are given and a phenomenological analysis of the main features of the model is presented. Read More

The precise connection between the theoretical T, CP, CPT asymmetries, in terms of transition probabilities between the filtered neutral meson $B_d$ states and the experimental asymmetries between the double decay rate intensities for Flavour-CP eigenstate decay products in a B-factory of entangled states, is established. This allows the identification of genuine Asymmetry Parameters in the time distribution of the asymmetries and their measurability by disentangling genuine and possible fake terms. We express the nine asymmetry parameters -- three different observables for each one of the three symmetries -- in terms of the ingredients of the Weisskopf-Wigner dynamical description of the entangled $B_d$-meson states and we obtain a global fit to their values from the BaBar collaboration experimental results. Read More

We point out that, in the context of the SM, $|V^2_{13}| + | V^2_{23}|$ is expected to be large, of order one. The fact that $|V^2_{13}| + |V^2_{23}| \approx 1.6 \times 10^{-3}$ motivates the introduction of a symmetry S which leads to $V_{CKM} ={1\>\!\!\!\mathrm{I}} $, with only the third generation of quarks acquiring mass. Read More

2015Aug
Affiliations: 1Valencia U. & Valencia U., IFIC, 2Lisbon, IST & Valencia U. & Valencia U., IFIC, 3Lisbon, IST, 4Lisbon, IST

We analyse various flavour changing processes like $t\to hu,hc$, $h\to \tau e,\tau\mu$ as well as hadronic decays $h\to bs,bd$, in the framework of a class of two Higgs doublet models where there are flavour changing neutral scalar currents at tree level. These models have the remarkable feature of having these flavour-violating couplings entirely determined by the CKM and PMNS matrices as well as $\tan\beta$. The flavour structure of these scalar currents results from a symmetry of the Lagrangian and therefore it is natural and stable under the renormalization group. Read More

In the context of two Higgs doublet models, we study the conditions required in order to have stable quasi-alignment in flavour space. We show that stability under the RGE imposes strong constraints on the flavour structure of the Yukawa couplings associated to each one of the Higgs doublets. In particular, we find a novel solution, where all Yukawa couplings are proportional to the so-called democratic matrix. Read More

The measurement of a large like-sign dimuon asymmetry $A^b_{SL}$ by the D0 experiment at the Tevatron departs noticeably from Standard Model expectations and it may be interpreted as a hint of physics beyond the Standard Model contributing to $\Delta B\neq 0$ transitions. In this work we analyse how the natural suppression of $A^b_{SL}$ in the SM can be circumvented by New Physics. We consider generic Standard Model extensions where the charged current mixing matrix is enlarged with respect to the usual $3\times 3$ unitary Cabibbo-Kobayashi-Maskawa matrix, and show how, within this framework, a significant enhancement over Standard Model expectations for $A^b_{SL}$ is easily reachable through enhancements of the semileptonic asymmetries $A^d_{SL}$ and $A^s_{SL}$ of both $B^0_d$ - $\bar B^0_d$ and $B^0_s$ - $\bar B^0_s$ systems. Read More

We analyse the constraints and some of the phenomenological implications of a class of two Higgs doublet models where there are flavour-changing neutral currents (FCNC) at tree level but the potentially dangerous FCNC couplings are suppressed by small entries of the CKM matrix $V$. This class of models have the remarkable feature that, as a result of a discrete symmetry of the Lagrangian, the FCNC couplings are entirely fixed in the quark sector by $V$ and the ratio $v_2 /v_1$ of the vevs of the neutral Higgs. The discrete symmetry is extended to the leptonic sector, so that there are FCNC in the leptonic sector with their flavour structure fixed by the leptonic mixing matrix. Read More

Quantum Entanglement between the two neutral mesons produced in meson factories has allowed the first indisputable direct observation of Time Reversal Violation in the time evolution of the neutral meson between the two decays. The exceptional meson transitions are directly connected to semileptonic and CP-eigenstate decay channels. The possibility of extending the observable asymmetries to more decay channels confronts the problem of the "orthogonality condition", which can be stated with this tongue-twister: Given a decay channel $f$, Which is the decay channel $f'$ such that the meson state not decaying to $f'$ is orthogonal to the meson state not decaying to $f$? In this paper we propose an alternative $T$-Violation Asymmetry at meson factories which allows its opening to any pair of decay channels. Read More

The flavour structure of the general Two Higgs Doublet Model (2HDM) is analysed and a detailed study of the parameter space is presented, showing that flavour mixing in the 2HDM can be parametrized by various unitary matrices which arise from the misalignment in flavour space between pairs of various Hermitian flavour matrices which can be constructed within the model. This is entirely analogous to the generation of the CKM matrix in the Standard Model (SM). We construct weak basis invariants which can give insight into the physical implications of any flavour model, written in an arbitrary weak basis (WB) in the context of 2HDM. Read More

We analyse the possible presence of New Physics (NP) in the Flavour Sector and evaluate its potential for solving the tension between the experimental values of $\AJPKs$ and $\BTNu$ with respect to the Standard Model (SM) expectations. Updated model independent analyses, where NP contributions are allowed in Bd - anti-Bd and Bs - anti-Bs transitions, suggest the need of New Physics in the $bd$ sector. A detailed analysis of recent Flavour data is then presented in the framework of a simple extension of the SM, where a $Q=2/3$ vector-like isosinglet quark is added to the spectrum of the SM. Read More

We construct extensions of the Standard Model with two Higgs doublets, where there are flavour changing neutral currents both in the quark and leptonic sectors, with their strength fixed by the fermion mixing matrices $V_{CKM}$ and $V_{PMNS}$. These models are an extension to the leptonic sector of the class of models previously considered by Branco, Grimus and Lavoura, for the quark sector. We consider both the cases of Dirac and Majorana neutrinos and identify the minimal discrete symmetry required in order to implement the models in a natural way. Read More

We propose an extension of the hypothesis of Minimal Flavour Violation (MFV) to general multi-Higgs Models without the assumption of Natural Flavour Conservation in the Higgs sector. We study in detail under what conditions the neutral Higgs couplings are only functions of $V_{CKM}$ and propose a MFV expansion for the neutral Higgs couplings to fermions. Read More

The sixth SuperB Workshop was convened in response to questions posed by the INFN Review Committee, evaluating the SuperB project at the request of INFN. The working groups addressed the capability of a high-luminosity flavor factory that can gather a data sample of 50 to 75 /ab in five years to elucidate New Physics phenomena unearthed at the LHC. This report summarizes the results of the Workshop. Read More

2008May
Affiliations: 1Valencia U. & Valencia U., IFIC, 2Lisbon, IST & Valencia U. & Valencia U., IFIC, 3INFN, Rome3 & Rome III U.

We show that it is possible to accommodate the observed size of the phase in $B^0_s$--$\bar B^0_s$, mixing in the framework of a model with violation of $3\times 3$ unitarity. This violation is associated to the presence of a new $Q=2/3$ isosinglet quark $T$, which mixes both with $t$ and $c$ and has a mass not exceeding 500 GeV. The crucial point is the fact that this framework allows for $\chi\equiv\arg(-V_{ts}V_{cb}V_{tb}^*V_{cs}^*)$ of order $\lambda$, to be contrasted with the situation in the Standard Model, where $\chi$ is constrained to be of order $\lambda^2$. Read More

The extraction of the weak phase $\alpha$ from $B\to\pi\pi$ decays has been controversial from a statistical point of view, as the frequentist vs. bayesian confrontation shows. We analyse several relevant questions which have not deserved full attention and pervade the extraction of $\alpha$. Read More

2006Aug
Affiliations: 1Valencia U. & Valencia U., IFIC, 2Lisbon, IST & Munich, Tech. U., 3Lisbon, IST

We analyse present constraints on the SM parameter space and derive, in a model independent way, various bounds on New Physics contributions to $B_d^0$--$\bar B_d^0$ and $B_s^0$--$\bar B_s^0$ mixings. Our analyses include information on a large set of asymmetries, leading to the measurement of the CKM phases $\gamma$ and $\bar\beta$, as well as recent data from D0 and CDF related to the $B_s^0$--$\bar B_s^0$ system such as the measurement of $\Delta M_{B_s}$, $A_{SL}$ and $\Delta\Gamma_{s}^{CP}$. We examine in detail several observables such as the asymmetries $A_{sl}^d$, $A_{SL}$, the width differences $\Delta\Gamma_{d}$ and $\Delta\Gamma_{s}^{CP}$ and discuss the r\^ole they play in establishing the limits on New Physics. Read More

We discuss how experiments measuring B -> pi pi and B -> rho rho may be used to search for a Delta I = 5/2 amplitude component. This component could be the explanation for a recent (albeit very tentative) hint from B(Bbar) -> rho rho decays that the isospin triangles do not close. Read More

We analyse the present experimental evidence for a complex CKM matrix, even allowing for New Physics contributions to $\epsilon_{K}$, $a_{J/\Psi K_{S}}$%, $\Delta M_{B_{d}}$, $\Delta M_{B_{s}}$, and the $\Delta I=1/2$ piece of $% B\to \rho \rho $ and $B\to \rho \pi $. We emphasize the crucial r\^{o}le played by the angle $\gamma $ in both providing irrefutable evidence for a 3$\times $3 complex CKM matrix and placing constraints on the size of NP contributions. It is shown that even if one allows for New Physics a real CKM matrix is excluded at a 99. Read More

If new physics (NP) is present in B -> pi pi decays, it can affect the isospin I=2 or I=0 channels. In this paper, we discuss various methods for detecting and measuring this NP. The techniques have increasing amounts of theoretical hadronic input. Read More

We study the effects of new-physics contributions to B --> pi pi decays, which can be parametrized as four new complex quantities. A simple analysis is provided by utilizing the reparametrization invariance of the decay amplitudes. We find that six quantities can be reabsorbed into the definitions of Standard Model-like parameters. Read More

When studying B decays within the Standard Model, it is customary to use the unitarity of the CKM matrix in order to write the decay amplitudes in terms of only two of the three weak phases which appear in the various diagrams. Occasionally, it is mentioned that those two weak phases can be used in order to describe any decay amplitude, even beyond the Standard Model. Here we point out that, when describing a generic decay amplitude, the two weak phases can be chosen completely at will, and we study the behavior of the decay amplitudes under changes in the two weak phases chosen as a basis. Read More

We carefully analyse the present experimental evidence for a complex CKM matrix, even allowing for New Physics contributions to $\epsilon_{K}$, $a_{J/\Psi K_S}$, $\Delta M_{B_{d}}$, $\Delta M_{B_{s}}$, and the $\Delta I=1/2$ piece of $B\to\rho\rho$ and $B\to\rho\pi$. We emphasize the crucial r\^ ole played by the angle $\gamma$ in both providing irrefutable evidence for a complex CKM matrix and placing constraints on the size of NP contributions. It is shown that even if one allows for New Physics a real CKM matrix is excluded at a 99. Read More

We use a new weak basis invariant approach to classify all the observable phases in any extension of the Standard Model (SM). We apply this formalism to determine the invariant CP phases in a simplified version of the Minimal Supersymmetric SM with only three non-trivial flavour structures. We propose four experimental measures to fix completely all the observable phases in the model. Read More

We analyse the allowed range of values of chi, both in the Standard Model and in models with New Physics, pointing out that a relatively large value of chi, e.g. of order lambda, is only possible in models where the unitarity of the 3x3 Cabibbo-Kobayashi-Maskawa matrix is violated through the introduction of extra Q=2/3 quarks. Read More

We study the determination of gamma from CP-violating observables in B -> pi+ pi- and B -> psi K_S. This determination requires theoretical input to one combination of hadronic parameters. We show that a mild assumption about this quantity may allow bounds to be placed on gamma, but we stress the pernicious effects that an eightfold discrete ambiguity has on such an analysis. Read More

Assuming that the Kobayashi-Maskawa mechanism gives the dominant contribution to CP violation at low energies, we propose a novel way of testing the flavour sector of the Standard Model which has the potencial for discovering New Physics. Using 3 x 3 unitarity of the V_{CKM} matrix and choosing a complete set of rephasing invariant phases, we derive a set of exact relations in terms of measurable quantities, namely moduli of V_{CKM} and arguments of rephasing invariant quartets. These tests complement the usual analysis in the \rho, \eta plane and, if there is New Physics, may reveal its source. Read More

2001May
Affiliations: 1CERN and FERMILAB, 2U. Valencia and IFIC, 3U. Valencia and IFIC

In this work, we update the constraints on tree level FCNC couplings in the framework of a theory with n isosinglet vector-like down quarks. In this context, we emphasize the sensitivity of the B -> J/psi K_S CP asymmetry to the presence of new vector-like down quarks. This CP asymmetry, together with the rare decays B -> X_{s,d} l bar{l} and K -> pi nu bar{nu} are the best options to further constrain the FCNC tree level couplings or even to point out, in the near future, the possible presence of vector-like quarks in the low energy spectrum, as suggested by GUT theories or models of large extra dimensions at the TeV scale. Read More

Tree-level Flavor-Changing Neutral Currents (FCNC) are characteristic of models with extra vector-like quarks. These new couplings can strongly modify the B^0 CP asymmetries without conflicting with low--energy constraints. In the light of a low CP asymmetry in B --> J/\psi K_{S}, we discuss the implications of these contributions. Read More

1997Nov
Affiliations: 1Dep. Fisica Teorica, U. de Valencia, 2Dep. Fisica Teorica, U. de Valencia

We study the $\gamma$-Z interference in the process $e^+ e^-\to \Upsilon \to \tau^+ \tau^-$ as a means to measure the neutral current coupling of the b-quark. The helicity amplitudes are calculated from resonant and background diagrams and the spin density matrix of the final state is discussed. The spin analyzer of the $\tau$'s is illustrated with the decays $\pi \nu$ and $\rho \nu \to (\pi \pi) \nu$. Read More

1997Sep
Affiliations: 1Departament de Fisica Teorica, Universitat de Valencia and IFIC, 2Departament de Fisica Teorica, Universitat de Valencia and IFIC, 3Theory Division, CERN and CFIF/IST and Dept. Fisica, Instituto Superior Tecnico, Lisboa, 4Departament de Fisica Teorica, Universitat de Valencia and IFIC

We show that the study of CP asymmetries in neutral B-meson decays provides a very sensitive probe of flavour-changing neutral currents (FCNC). We introduce two new angles, $\alpha_{SM}$ and $\beta_{SM}$, whose main feature is that they can be readily obtained from the measurement of the CP asymmetries $a_{J/\psi K_s}$, $a_{\pi^+ \pi^-}$ and the ratio $R_u \equiv|V_{ud}V_{ub}^*|/|V_{cd}V_{cb}^*|$, providing a quantitative test of the presence of new physics in a model-independent way. Assuming that new physics is due to the presence of an isosinglet down-type quark, we indicate how to reconstruct the unitarity quadrangles and point out that the measurements of the above asymmetries, within the expected experimental errors, may detect FCNC effects, even for values of $|\sum_{i=1}^3 V_{id} V_{ib}^* / (V_{td} V_{tb}^*)| $ at the level of a few times $10^{-2}$. Read More

1997Aug
Affiliations: 1Departament de Fisica Teorica, Univeritat de Valencia and IFIC, 2Departament de Fisica Teorica, Univeritat de Valencia and IFIC

In this work we analyze a new piece present in the $\Delta F = 2$ effective Lagrangian in models with extra vector-like quarks. This piece, which was not taken into account previously, is required in order to preserve gauge invariance once the unitarity of the CKM matrix is lost. We illustrate the effects of this new piece in both, CP conserving and CP violating processes. Read More

1997Jul
Affiliations: 1Valencia University, 2Valencia University, 3Valencia University, 4INFN-Sezione di Napoli

The D^0-D^0(bar) mixing is analyzed in a weak gauged U(4)_L x U(4)_R chiral lagrangian model where the electroweak interaction is introduced as a gauge theory over the meson degrees of freedom. This model allows a particular realization of the G.I. Read More

1995Dec
Affiliations: 1Dep. Fisica Teorica, U. de Valencia and IFIC, 2Dep. Fisica Teorica, U. de Valencia and IFIC, 3Dep. Fisica Teorica, U. de Valencia and IFIC

We analyze the possibilities that the proposed $\Phi$-factories offer to measure $\gamma-Z$ interference. In the unpolarized beam case, we study different signatures in the $\rho \pi$ channel, taking advantage of the presence of the near-by $a_1$ resonance. We build a C-odd forward-backward asymmetry, estimated to be around $10^{-5}$, and (P-even, T-even) and (P-odd, T-odd) alignments of the $\rho$, to be seen from the angular distribution of its $\pi \pi$ decay products. Read More

Within the framework of theories where both scalars and fermions are present, we develop a systematic prescription for the construction of CP-violating quantities that are invariant under basis transformations of those matter fields. In theories with Spontaneous Symmetry Breaking, the analysis involves the vevs' transformation properties under a scalar basis change, with a considerable simplification of the study of CP violation in the scalar sector. These techniques are then applied in detail to the two Higgs-doublet model with quarks. Read More

We study both the elastic ($\nu e \rightarrow \nu e$) and the radiative process ($\nu e \rightarrow \nu e \gamma$) and discuss how these processes can shed light on some current topics in neutrino physics such as a neutrino magnetic moment and neutrino oscillations. The radiative process allows to reach low values of $Q^2$ without the need to operate at very small energies of recoil electrons, a favourable scenario to search for a neutrino magnetic moment. The elastic cross section contains a dynamical zero at $E_{\nu}=m/(4 sin^2\theta_{W})$ and forward electrons for the electron antineutrino channel, which is reachable at reactor facilities and accessible after the convolution with the antineutrino spectrum. Read More

A novel method to look for neutrino oscillations is proposed based on the elastic scattering process $\bar{\nu}_{i} e^{-}\rightarrow \bar{\nu}_{i} e^{-}$, taking advantage of the dynamical zero present in the differential cross section for $\bar{\nu}_{e} e^{-}\rightarrow \bar{\nu}_{e} e^{-}$. An effective tunable experiment between the "appearance" and "disappearance" limits is made possible. Prospects to exclude the allowed region for atmospheric neutrino oscillations are given. Read More

Non--resonant decays of charmed mesons into three pseudoscalars are analyzed in a weak gauged $U(4)_L \otimes U(4)_R$ chiral lagrangian model. The calculation is free of unknown parameters and only requires the masses of pseudoscalar mesons as hadronic inputs. When comparison with experimental data is possible we find that in some processes we have good agreement and in others we are an order of magnitude below. Read More

The contribution of a neutrino magnetic moment $\mu_{\nu}$ to the cross section of the process $\nu e^{-}\rightarrow \nu e^{-} \gamma $ has been calculated and compared with the Standard Electroweak one. The radiative process allows to reach low enough values of $Q^2$ without the need to operate at very small energies of recoil electrons. Regions in the phase space which are more favourable to set bounds on $\mu_{\nu}$ are suggested. Read More

We show the existence of dynamical zeros in the helicity amplitudes for neutrino-electron elastic scattering at lowest order in the standard theory. In particular, the $\lambda=1/2$ non-flip electron helicity amplitude in the electron antineutrino process vanishes for an incident neutrino energy $E_{\nu}=m_{e}/(4sin^{2}\theta_{W})$ and forward electrons (maximum recoil energy). The rest of helicity amplitudes show kinematical zeros in this configuration and therefore the cross section vanishes. Read More

We analyze the decay modes of charmed mesons into two--pseudoscalars in a weak--gauged U(4)_L x U(4)_R chiral lagrangian model. The calculation is free of unknown parameters and only requires as inputs the masses of pseudoscalars and the decay constant of the pion. The general pattern of the results at leading order compares reasonably well with the experimental data. Read More