F. Glueck

F. Glueck
Are you F. Glueck?

Claim your profile, edit publications, add additional information:

Contact Details

Name
F. Glueck
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (5)
 
Physics - Instrumentation and Detectors (3)
 
High Energy Physics - Experiment (3)
 
Cosmology and Nongalactic Astrophysics (2)
 
Instrumentation and Methods for Astrophysics (1)

Publications Authored By F. Glueck

2016Jun

DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Read More

Sterile neutrinos in the mass range of a few keV are candidates for both cold and warm dark matter. An ad-mixture of a heavy neutrino mass eigenstate to the electron neutrino would result in a minuscule distortion - a 'kink' - in a $\beta$-decay spectrum. In this paper we show that a wavelet transform is a very powerful shape analysis method to detect this signature. Read More

We investigate the sensitivity of tritium $\beta$-decay experiments for keV-scale sterile neutrinos. Relic sterile neutrinos in the keV mass range can contribute both to the cold and warm dark matter content of the universe. This work shows that a large-scale tritium beta-decay experiment, similar to the KATRIN experiment that is under construction, can reach a statistical sensitivity of the active-sterile neutrino mixing of $\sin^2\theta \sim 10^{-8}$. Read More

The proton asymmetry parameter C in neutron decay describes the correlation between neutron spin and proton momentum. In this Letter, the first measurement of this quantity is presented. The result C=-0. Read More

A new measurement of the neutrino asymmetry parameter B in neutron decay, the angular correlation between neutron spin and anti-neutrino momentum, is presented. The result, B=0.9802(50), agrees with the Standard Model expectation and earlier measurements, and permits improved tests on ``new physics'' in neutron decay. Read More

In the Standard Model of elementary particles, quark-mixing is expressed in terms of a 3 x 3 unitary matrix V, the so called Cabibbo-Kobayashi-Maskawa (CKM) matrix. Significant unitarity checks are so far possible for the first row of this matrix. This article reviews the experimental and theoretical information on these matrix elements. Read More