Eric Kuflik - Editor

Eric Kuflik
Are you Eric Kuflik?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Eric Kuflik
Affiliation
Editor
City
Missoula
Country
United States

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (31)
 
High Energy Physics - Theory (6)
 
High Energy Physics - Experiment (5)
 
Cosmology and Nongalactic Astrophysics (4)
 
General Relativity and Quantum Cosmology (1)
 
Nuclear Experiment (1)
 
High Energy Astrophysical Phenomena (1)

Publications Authored By Eric Kuflik

Twin Higgs models solve the little hierarchy problem without introducing new colored particles, however they are often in tension with measurements of the radiation density at late times. Here we explore viable cosmological histories for Twin Higgs models. In particular, we show that mixing between the SM and twin neutrinos can thermalize the two sectors below the twin QCD phase transition, significantly reducing the twin sector's contribution to the radiation density. Read More

2016Aug
Authors: Jim Alexander, Marco Battaglieri, Bertrand Echenard, Rouven Essig, Matthew Graham, Eder Izaguirre, John Jaros, Gordan Krnjaic, Jeremy Mardon, David Morrissey, Tim Nelson, Maxim Perelstein, Matt Pyle, Adam Ritz, Philip Schuster, Brian Shuve, Natalia Toro, Richard G Van De Water, Daniel Akerib, Haipeng An, Konrad Aniol, Isaac J. Arnquist, David M. Asner, Henning O. Back, Keith Baker, Nathan Baltzell, Dipanwita Banerjee, Brian Batell, Daniel Bauer, James Beacham, Jay Benesch, James Bjorken, Nikita Blinov, Celine Boehm, Mariangela Bondí, Walter Bonivento, Fabio Bossi, Stanley J. Brodsky, Ran Budnik, Stephen Bueltmann, Masroor H. Bukhari, Raymond Bunker, Massimo Carpinelli, Concetta Cartaro, David Cassel, Gianluca Cavoto, Andrea Celentano, Animesh Chaterjee, Saptarshi Chaudhuri, Gabriele Chiodini, Hsiao-Mei Sherry Cho, Eric D. Church, D. A. Cooke, Jodi Cooley, Robert Cooper, Ross Corliss, Paolo Crivelli, Francesca Curciarello, Annalisa D'Angelo, Hooman Davoudiasl, Marzio De Napoli, Raffaella De Vita, Achim Denig, Patrick deNiverville, Abhay Deshpande, Ranjan Dharmapalan, Bogdan Dobrescu, Sergey Donskov, Raphael Dupre, Juan Estrada, Stuart Fegan, Torben Ferber, Clive Field, Enectali Figueroa-Feliciano, Alessandra Filippi, Bartosz Fornal, Arne Freyberger, Alexander Friedland, Iftach Galon, Susan Gardner, Francois-Xavier Girod, Sergei Gninenko, Andrey Golutvin, Stefania Gori, Christoph Grab, Enrico Graziani, Keith Griffioen, Andrew Haas, Keisuke Harigaya, Christopher Hearty, Scott Hertel, JoAnne Hewett, Andrew Hime, David Hitlin, Yonit Hochberg, Roy J. Holt, Maurik Holtrop, Eric W. Hoppe, Todd W. Hossbach, Lauren Hsu, Phil Ilten, Joe Incandela, Gianluca Inguglia, Kent Irwin, Igal Jaegle, Robert P. Johnson, Yonatan Kahn, Grzegorz Kalicy, Zhong-Bo Kang, Vardan Khachatryan, Venelin Kozhuharov, N. V. Krasnikov, Valery Kubarovsky, Eric Kuflik, Noah Kurinsky, Ranjan Laha, Gaia Lanfranchi, Dale Li, Tongyan Lin, Mariangela Lisanti, Kun Liu, Ming Liu, Ben Loer, Dinesh Loomba, Valery E. Lyubovitskij, Aaron Manalaysay, Giuseppe Mandaglio, Jeremiah Mans, W. J. Marciano, Thomas Markiewicz, Luca Marsicano, Takashi Maruyama, Victor A. Matveev, David McKeen, Bryan McKinnon, Dan McKinsey, Harald Merkel, Jeremy Mock, Maria Elena Monzani, Omar Moreno, Corina Nantais, Sebouh Paul, Michael Peskin, Vladimir Poliakov, Antonio D Polosa, Maxim Pospelov, Igor Rachek, Balint Radics, Mauro Raggi, Nunzio Randazzo, Blair Ratcliff, Alessandro Rizzo, Thomas Rizzo, Alan Robinson, Andre Rubbia, David Rubin, Dylan Rueter, Tarek Saab, Elena Santopinto, Richard Schnee, Jessie Shelton, Gabriele Simi, Ani Simonyan, Valeria Sipala, Oren Slone, Elton Smith, Daniel Snowden-Ifft, Matthew Solt, Peter Sorensen, Yotam Soreq, Stefania Spagnolo, James Spencer, Stepan Stepanyan, Jan Strube, Michael Sullivan, Arun S. Tadepalli, Tim Tait, Mauro Taiuti, Philip Tanedo, Rex Tayloe, Jesse Thaler, Nhan V. Tran, Sean Tulin, Christopher G. Tully, Sho Uemura, Maurizio Ungaro, Paolo Valente, Holly Vance, Jerry Vavra, Tomer Volansky, Belina von Krosigk, Andrew Whitbeck, Mike Williams, Peter Wittich, Bogdan Wojtsekhowski, Wei Xue, Jong Min Yoon, Hai-Bo Yu, Jaehoon Yu, Tien-Tien Yu, Yue Zhang, Yue Zhao, Yiming Zhong, Kathryn Zurek

This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years. Read More

We propose a new mechanism for thermal dark matter freezeout, termed Co-Decaying Dark Matter. Multi-component dark sectors with degenerate particles and out-of-equilibrium decays can co-decay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles, rather than from Boltzmann suppression. Read More

We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3-to-2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Read More

We present a novel dark matter candidate, an Elastically Decoupling Relic (ELDER), which is a cold thermal relic whose present abundance is determined by the cross-section of its elastic scattering on Standard Model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross-section with electrons, photons and/or neutrinos in the $10^{-3}-1$ fb range. Read More

We study rare four-body decays of the Z-boson involving at least one neutrino and one charged lepton. Large destructive interferences make these decays very sensitive to the Z couplings to neutrinos. As the identified charged leptons can determine the neutrino flavors, these decays probe the universality of the Z couplings to neutrinos. Read More

We study a simplified model of the SM Higgs boson decaying to a degenerate pair of scalars which travel a macroscopic distance before decaying to SM particles. This is the leading signal for many well-motivated solutions to the hierarchy problem that do not propose additional light colored particles. Bounds for displaced Higgs decays below $10$ cm are found by recasting existing tracker searches from Run I. Read More

LHC searches for fermionic top partners $T$ focus on three decay topologies: $T\to bW$, $T\to tZ$, and $T\to th$. However, top partners may carry new conserved quantum numbers that forbid these decays. The simplest possibility is a conserved parity, under which the top partner is odd and all SM states are even. Read More

We present the leading experimental constraints on supersymmetric models with R-parity violation (RPV) and a long-lived lightest superpartner (LSP). We consider both the well-motivated dynamical RPV scenario as well as the conventional holomorphic RPV operators. Guided by naturalness, we study the cases of stop, gluino, and higgsino LSPs with several possible leading decay channels in each case. Read More

The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. Read More

It has recently been proposed that dark matter could be a thermal relic of 3-to-2 scatterings in a strongly coupled hidden sector. We present explicit classes of strongly coupled gauge theories that admit this behavior. These are QCD-like theories of dynamical chiral symmetry breaking, where the pions play the role of dark matter. Read More

We study a scenario in which the dilaton, a pseudo-Goldstone boson of the spontaneous breaking of conformal symmetry, provides a portal between dark matter and the visible sector. We consider the low-energy description of the theory in which the dilaton mixes with the Standard Model Higgs boson, thereby predicting a second scalar at or above the weak scale. We derive the collider and dark matter constraints on the corresponding parameter space and find that existing experimental data point towards the decoupling limit in which the CFT scale is well above the electroweak scale. Read More

We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout process is a number-changing 3->2 annihilation of strongly-interacting-massive-particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. Read More

We present a new paradigm for supersymmetric theories with R-parity violation (RPV). At high scale, R-parity is conserved in the visible sector but spontaneously broken in the SUSY-breaking sector. The breaking is then dynamically mediated to the visible sector and is manifested via non-renormalizable operators at low energy. Read More

We present constraints on decaying and annihilating dark matter (DM) in the 4 keV to 10 GeV mass range, using published results from the satellites HEAO-1, INTEGRAL, COMPTEL, EGRET, and the Fermi Gamma-ray Space Telescope. We derive analytic expressions for the gamma-ray spectra from various DM decay modes, and find lifetime constraints in the range 10^24-10^28 sec, depending on the DM mass and decay mode. We map these constraints onto the parameter space for a variety of models, including a hidden photino that is part of a kinetically mixed hidden sector, a gravitino with R-parity violating decays, a sterile neutrino, DM with a dipole moment, and a dark pion. Read More

We present a fit to the 2012 LHC Higgs data in different supersymmetric frameworks using naturalness as a guiding principle. We consider the MSSM and its D-term and F-term extensions that can raise the tree-level Higgs mass. When adding an extra chiral superfield to the MSSM, three parameters are needed determine the tree-level couplings of the lightest Higgs. Read More

Recently, the ATLAS and CMS collaborations have announced the discovery of a 125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and 2012 LHC and Tevatron Higgs data in the context of simplified new physics models, paying close attention to models which can enhance the diphoton rate and allow for a natural weak-scale theory. Combining the available LHC and Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels, we derive constraints on the effective low-energy theory of the Higgs boson. Read More

The LHC and Tevatron Higgs data are interpreted as constraints on an effective theory of a Higgs boson with mass close to 125 GeV. We focus on the diphoton, ZZ*, WW* channels at the LHC, and the b-bbar channel at the Tevatron, which are currently the most sensitive probes of a Higgs with such a mass. Combining the available data in these channels, we derive the preferred regions of the parameter space of the effective theory. Read More

Evidence continues to grow in the MiniBooNE (MB) antineutrino mode supporting a low-energy excess compatible with the MB neutrino mode and possibly also confirming the results of the LSND experiment. At least one sterile neutrino is required to explain the anomalies consistent with the observations of other experiments. At the same time, there is a strong tension between the positive signals of LSND and MB and the null results of nu_e and nu_mu disappearance experiments. Read More

Within the four generation Standard Model, the Higgs couplings to gluons and to photons deviate in a significant way from the predictions of the three generation Standard Model. As a consequence, large departures in several Higgs production and decay channels are expected. Recent Higgs search results, presented by ATLAS, CMS and CDF, hint on the existence of a Higgs boson with a mass around 125 GeV. Read More

We analyze the 2011 LHC Higgs data in the context of simplified new physics models addressing the naturalness problem. These models are expected to contain new particles with sizable couplings to the Higgs boson, which can easily modify the Higgs production cross sections and branching fractions. We focus on searches in the Higgs to 4 leptons and Higgs to diphoton channels, in the latter case including the vector boson fusion production mode. Read More

We consider associated production of squarks and gluinos with the lightest supersymmetric particle (LSP), or states nearly degenerate in mass with it. Though sub-dominant to pair production of color SU(3)-charged superpartners, these processes are directly sensitive to the wavefunction composition of the lightest neutralinos. Exploiting event-shape variables -- including some introduced here for the first time -- we are able to identify the composition of the LSP by selecting events involving a single high-pT jet recoiling against missing transverse energy. Read More

We point out that in theories where the gravitino mass, $M_{3/2}$, is in the range (10-50)TeV, with soft-breaking scalar masses and trilinear couplings of the same order, there exists a robust region of parameter space where the conditions for electroweak symmetry breaking (EWSB) are satisfied without large imposed cancellations. Compactified string/M-theory with stabilized moduli that satisfy cosmological constraints generically require a gravitino mass greater than about 30 TeV and provide the natural explanation for this phenomenon. We find that even though scalar masses and trilinear couplings (and the soft-breaking $B$ parameter) are of order (10-50)TeV, the Higgs vev takes its expected value and the $\mu$ parameter is naturally of order a TeV. Read More

2011May
Authors: Daniele Alves1, Nima Arkani-Hamed2, Sanjay Arora3, Yang Bai4, Matthew Baumgart5, Joshua Berger6, Matthew Buckley7, Bart Butler8, Spencer Chang9, Hsin-Chia Cheng10, Clifford Cheung11, R. Sekhar Chivukula12, Won Sang Cho13, Randy Cotta14, Mariarosaria D'Alfonso15, Sonia El Hedri16, Rouven Essig17, Jared A. Evans18, Liam Fitzpatrick19, Patrick Fox20, Roberto Franceschini21, Ayres Freitas22, James S. Gainer23, Yuri Gershtein24, Richard Gray25, Thomas Gregoire26, Ben Gripaios27, Jack Gunion28, Tao Han29, Andy Haas30, Per Hansson31, JoAnne Hewett32, Dmitry Hits33, Jay Hubisz34, Eder Izaguirre35, Jared Kaplan36, Emanuel Katz37, Can Kilic38, Hyung-Do Kim39, Ryuichiro Kitano40, Sue Ann Koay41, Pyungwon Ko42, David Krohn43, Eric Kuflik44, Ian Lewis45, Mariangela Lisanti46, Tao Liu47, Zhen Liu48, Ran Lu49, Markus Luty50, Patrick Meade51, David Morrissey52, Stephen Mrenna53, Mihoko Nojiri54, Takemichi Okui55, Sanjay Padhi56, Michele Papucci57, Michael Park58, Myeonghun Park59, Maxim Perelstein60, Michael Peskin61, Daniel Phalen62, Keith Rehermann63, Vikram Rentala64, Tuhin Roy65, Joshua T. Ruderman66, Veronica Sanz67, Martin Schmaltz68, Stephen Schnetzer69, Philip Schuster70, Pedro Schwaller71, Matthew D. Schwartz72, Ariel Schwartzman73, Jing Shao74, Jessie Shelton75, David Shih76, Jing Shu77, Daniel Silverstein78, Elizabeth Simmons79, Sunil Somalwar80, Michael Spannowsky81, Christian Spethmann82, Matthew Strassler83, Shufang Su84, Tim Tait85, Brooks Thomas86, Scott Thomas87, Natalia Toro88, Tomer Volansky89, Jay Wacker90, Wolfgang Waltenberger, Itay Yavin, Felix Yu, Yue Zhao, Kathryn Zurek
Affiliations: 1Editor, 2Editor, 3Editor, 4Editor, 5Editor, 6Editor, 7Editor, 8Editor, 9Editor, 10Editor, 11Editor, 12Editor, 13Editor, 14Editor, 15Editor, 16Editor, 17Editor, 18Editor, 19Editor, 20Editor, 21Editor, 22Editor, 23Editor, 24Editor, 25Editor, 26Editor, 27Editor, 28Editor, 29Editor, 30Editor, 31Editor, 32Editor, 33Editor, 34Editor, 35Editor, 36Editor, 37Editor, 38Editor, 39Editor, 40Editor, 41Editor, 42Editor, 43Editor, 44Editor, 45Editor, 46Editor, 47Editor, 48Editor, 49Editor, 50Editor, 51Editor, 52Editor, 53Editor, 54Editor, 55Editor, 56Editor, 57Editor, 58Editor, 59Editor, 60Editor, 61Editor, 62Editor, 63Editor, 64Editor, 65Editor, 66Editor, 67Editor, 68Editor, 69Editor, 70Editor, 71Editor, 72Editor, 73Editor, 74Editor, 75Editor, 76Editor, 77Editor, 78Editor, 79Editor, 80Editor, 81Editor, 82Editor, 83Editor, 84Editor, 85Editor, 86Editor, 87Editor, 88Editor, 89Editor, 90Editor

This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Read More

We consider a solution to the mu-problem within M theory on a G2-manifold. Our study is based upon the discrete symmetry proposed by Witten that forbids the mu-term and solves the doublet-triplet splitting problem. We point out that the symmetry must be broken by moduli stabilization, describing in detail how this can occur. Read More

In recent years many models of supersymmetry have implied a large production rate for events including a high multiplicity of third generation quarks, such as four top quarks. It is arguably the best-motivated channel for early LHC discovery. A particular example is generic string theories compactified to four dimensions with stabilized moduli which typically have multi-TeV squarks and lighter gluinos (below a TeV) with a large pair production rate and large branching ratios to four tops. Read More

We study the impact of nonrenormalizable operators in flipped SU(5) that can generate a large mu term, R-parity violation, and rapid proton decay. While our motivation is to determine whether F-theory can naturally realize flipped SU(5), this analysis is general and leads to a characterization of symmetries capable of controlling such operators and should be independent of F-theory. We then discuss some specific implications for F-theory model building, where a significant mu problem is unavoidable. Read More

In recent years it has been realised that pre-BBN decays of moduli can be a significant source of dark matter production, giving a `non-thermal WIMP miracle' and substantially reduced fine-tuning in cosmological axion physics. We study moduli masses and sharpen the claim that moduli dominated the pre-BBN Universe. We conjecture that in any string theory with stabilized moduli there will be at least one modulus field whose mass is of order (or less than) the gravitino mass. Read More

We explore a variant on the MT2 kinematic variable which enables dark matter mass measurements for simple, one stage, cascade decays. This will prove useful for constraining a subset of supersymmetric processes, or a class of leptophilic dark matter models at the LHC. We investigate the statistical reach of these measurements and discuss which sources of error have the largest effects. Read More

Motivated by recent data from CoGeNT and the DAMA annual modulation signal, we discuss collider constraints on MSSM neutralino dark matter with mass in the 5-15 GeV range. Such an LSP would be a Bino with a small Higgsino admixture. Maximization of the DM-nucleon scattering cross section for such a WIMP requires a light Higgs boson with tan beta enhanced couplings. Read More

We study the LHC signal of a light gluino whose cascade decay is dominated by channels involving top, and, sometimes, bottom quarks. This is a generic signature for a number of supersymmetry breaking scenarios considered recently, where the squarks are heavier than gauginos. Third generation final states generically dominate since third generation squarks are typically somewhat lighter in these models. Read More