Eric Agol - University of Washington

Eric Agol
Are you Eric Agol?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Eric Agol
Affiliation
University of Washington
City
Seattle
Country
United States

Pubs By Year

External Links

Pub Categories

 
Earth and Planetary Astrophysics (46)
 
Solar and Stellar Astrophysics (12)
 
Instrumentation and Methods for Astrophysics (10)
 
Astrophysics of Galaxies (1)
 
Physics - Physics Education (1)
 
Physics - Data Analysis; Statistics and Probability (1)
 
Statistics - Applications (1)
 
High Energy Astrophysical Phenomena (1)

Publications Authored By Eric Agol

The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large datasets. Gaussian Processes are a popular class of models used for this purpose but, since the computational cost scales as the cube of the number of data points, their application has been limited to relatively small datasets. In this paper, we present a method for Gaussian Process modeling in one-dimension where the computational requirements scale linearly with the size of the dataset. Read More

We present an update to the EVEREST K2 pipeline that addresses various limitations in the previous version and improves the photometric precision of the de-trended light curves. We develop a fast regularization scheme for third order pixel level decorrelation (PLD) and adapt the algorithm to include the PLD vectors of neighboring stars to enhance the predictive power of the model and minimize overfitting, particularly for faint stars. We also modify PLD to work for saturated stars and improve its performance on extremely variable stars. Read More

Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ~5 AU in the mass range of ~10 - 80 M$_{\text{Jup}}$. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help asses the reality of the desert and provide insight to the formation and evolution of these objects. Read More

Measuring precise planet masses, densities, and orbital dynamics in individual planetary systems is an important pathway toward understanding planet formation. The WASP-47 system has an unusual architecture that motivates a complex formation theory. The system includes a hot Jupiter ("b") neighbored by interior ("e") and exterior ("d") sub-Neptunes, and a long-period eccentric giant planet ("c"). Read More

We examine the feasibility of detecting auroral emission from the potentially habitable exoplanet Proxima Centauri b. Detection of aurorae would yield an independent confirmation of the planet's existence, constrain the presence and composition of its atmosphere, and determine the planet's eccentricity and inclination, thereby breaking the mass-inclination degeneracy. If Proxima Centauri b is a terrestrial world with an Earth-like atmosphere and magnetic field, we estimate the power at the 5577\AA\ OI auroral line is on the order of 0. Read More

We report the detections of a giant planet (MARVELS-7b) and a brown dwarf candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. It is the first close binary system with more than one substellar circum-primary companion discovered to the best of our knowledge. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Read More

The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems as a function of their physical properties. However, transit surveys like Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn, the most massive planets in our Solar System. Read More

We present EVEREST, an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation (PLD) to remove systematics introduced by the spacecraft's pointing error and a Gaussian process (GP) to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than $K_p \approx 13$, and within a factor of two of the Kepler precision for fainter targets. Read More

2016Apr
Affiliations: 1Max Planck Institute for Solar System Research, Göttingen, 2Neukirchen-Vluyn, 3Schenectady County Community College, Schenectady NY, 4NASA Goddard Space Flight Center, Greenbelt MD, 5University of Washington, Seattle WA

We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. Read More

As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f, a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is $0. Read More

The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. Read More

Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b (K10b), and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c (K10c). Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014-2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. Read More

We infer dynamical masses in eight multi-planet systems using transit times measured from Kepler's complete dataset, including short-cadence data where available. Of the eighteen dynamical masses that we infer, ten pass multiple tests for robustness. These are in systems; Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Read More

We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength dependent variations in the eclipse times of gas-giant planets. A displaced hot-spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot-spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. Read More

We derive the transit timing variations (TTVs) of two planets near a second order mean motion resonance on nearly circular orbits. We show that the TTVs of each planet are given by sinusoids with a frequency of $j n_2-(j-2)n_1$, where $j \ge 3$ is an integer characterizing the resonance and $n_2$ and $n_1$ are the mean motions of the outer and inner planets, respectively. The amplitude of the TTV depends on the mass of the perturbing planet, relative to the mass of the star, and on both the eccentricities and longitudes of pericenter of each planet. Read More

Direct imaging of extrasolar planets with future space-based coronagraphic telescopes may provide a means of detecting companion moons at wavelengths where the moon outshines the planet. We propose a detection strategy based on the positional variation of the center of light with wavelength, "spectroastrometry." This new application of this technique could be used to detect an exomoon, to determine the exomoon's orbit and the mass of the host exoplanet, and to disentangle of the spectra of the planet and moon. Read More

Characterization of transiting planets with transit timing variations (TTVs) requires understanding how to translate the observed TTVs into masses and orbital elements of the planets. This can be challenging in multi-planet transiting systems, but fortunately these systems tend to be nearly plane-parallel and low eccentricity. Here we present a novel derivation of analytic formulae for TTVs that are accurate to first order in the planet-star mass ratios and in the orbital eccentricities. Read More

The Kepler mission has yielded a large number of planet candidates from among the Kepler Objects of Interest (KOIs), but spectroscopic follow-up of these relatively faint stars is a serious bottleneck in confirming and characterizing these systems. We present motivation and survey design for an ongoing project with the SDSS-III multiplexed APOGEE near-infrared spectrograph to monitor hundreds of KOI host stars. We report some of our first results using representative targets from our sample, which include current planet candidates that we find to be false positives, as well as candidates listed as false positives that we do not find to be spectroscopic binaries. Read More

HAT-P-20b is a giant exoplanet that orbits a metal-rich star. The planet itself has a high total density, suggesting that it may also have a high metallicity in its atmosphere. We analyze two eclipses of the planet in each of the 3. Read More

Gravitational interactions between planets in transiting exoplanetary systems lead to variations in the times of transit that are diagnostic of the planetary masses and the dynamical state of the system. Here we show that synodic "chopping" contributions to these transit timing variations (TTVs) can be used to uniquely measure the masses of planets without full dynamical analyses involving direct integration of the equations of motion. We present simple analytic formulae for the chopping signal, which are valid (generally <10% error) for modest eccentricities e <~ 0. Read More

We report secondary eclipse photometry of the hot Jupiter XO-3b in the 4.5~$\mu$m band taken with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We measure individual eclipse depths and center of eclipse times for a total of twelve secondary eclipses. Read More

The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. Read More

Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0. Read More

2014Mar
Affiliations: 1Sagan Fellow, JPL, 2Caltech, 3Caltech, 4ELTE Gothard Astrophysical Observatory, 5PSU, 6Princeton University, 7UCSC, 8U. of Washington, 9Northwestern, 10U. of Colorado, 11U. of Hawaii, 12UCB, 13MIT, 14U. of Arizona, 15ETH Zurich

Kepler-13Ab (= KOI-13.01) is a unique transiting hot Jupiter. It is one of very few known short-period planets orbiting a hot A-type star, making it one of the hottest planets currently known. Read More

Transit timing variations (TTVs) have proven to be a powerful technique for confirming Kepler planet candidates, for detecting non-transiting planets, and for constraining the masses and orbital elements of multi-planet systems. These TTV applications often require the numerical integration of orbits for computation of transit times (as well as impact parameters and durations); frequently tens of millions to billions of simulations are required when running statistical analyses of the planetary system properties. We have created a fast code for transit timing computation, TTVFast, which uses a symplectic integrator with a Keplerian interpolator for the calculation of transit times (Nesvorny et al. Read More

The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J. Read More

We extend the statistical analysis of Lissauer et al. (2012, ApJ 750, 112), which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represent true transiting planets, and develop therefrom a procedure to validate large numbers of planet candidates in multis as bona fide exoplanets. We show that this statistical framework correctly estimates the abundance of false positives already identified around Kepler targets with multiple sets of transit-like signatures based on their abundance around targets with single sets of transit-like signatures. Read More

2014Jan
Authors: Geoffrey W. Marcy, Howard Isaacson, Andrew W. Howard, Jason F. Rowe, Jon M. Jenkins, Stephen T. Bryson, David W. Latham, Steve B. Howell, Thomas N. Gautier III, Natalie M. Batalha, Leslie A. Rogers, David Ciardi, Debra A. Fischer, Ronald L. Gilliland, Hans Kjeldsen, Jørgen Christensen-Dalsgaard, Daniel Huber, William J. Chaplin, Sarbani Basu, Lars A. Buchhave, Samuel N. Quinn, William J. Borucki, David G. Koch, Roger Hunter, Douglas A. Caldwell, Jeffrey Van Cleve, Rea Kolbl, Lauren M. Weiss, Erik Petigura, Sara Seager, Timothy Morton, John Asher Johnson, Sarah Ballard, Chris Burke, William D. Cochran, Michael Endl, Phillip MacQueen, Mark E. Everett, Jack J. Lissauer, Eric B. Ford, Guillermo Torres, Francois Fressin, Timothy M. Brown, Jason H. Steffen, David Charbonneau, Gibor S. Basri, Dimitar D. Sasselov, Joshua Winn, Roberto Sanchis-Ojeda, Jessie Christiansen, Elisabeth Adams, Christopher Henze, Andrea Dupree, Daniel C. Fabrycky, Jonathan J. Fortney, Jill Tarter, Matthew J. Holman, Peter Tenenbaum, Avi Shporer, Philip W. Lucas, William F. Welsh, Jerome A. Orosz, T. R. Bedding, T. L. Campante, G. R. Davies, Y. Elsworth, R. Handberg, S. Hekker, C. Karoff, S. D. Kawaler, M. N. Lund, M. Lundkvist, T. S. Metcalfe, A. Miglio, V. Silva Aguirre, D. Stello, T. R. White, Alan Boss, Edna Devore, Alan Gould, Andrej Prsa, Eric Agol, Thomas Barclay, Jeff Coughlin, Erik Brugamyer, Fergal Mullally, Elisa V. Quintana, Martin Still, Susan E. hompson, David Morrison, Joseph D. Twicken, Jean-Michel Désert, Josh Carter, Justin R. Crepp, Guillaume Hébrard, Alexandre Santerne, Claire Moutou, Charlie Sobeck, Douglas Hudgins, Michael R. Haas, Paul Robertson, Jorge Lillo-Box, David Barrado

We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities for all of the transiting planets (41 of 42 have a false-positive probability under 1%), and we constrain their sizes and masses. Read More

The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk, and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in SDSS-I/II, we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well-fit by a power-law, with a spectral index in excellent agreement with previous results. Read More

Since 2005, the Pre-Major in Astronomy Program (Pre-MAP) at the University of Washington (UW) Department of Astronomy has made a concentrated effort to recruit and retain underrepresented undergraduates in science, technology, engineering and mathematics (STEM). This paper evaluates Pre-MAP in the context of the larger UW student population using data compiled by the University's student database. We evaluate the Pre-MAP program in terms of our goals of recruiting a more diverse population than the University and in terms of a higher fraction of students successfully completing degrees. Read More

We report secondary eclipse photometry of two hot Jupiters, WASP-48b and HAT-P-23b, at 3.6 and 4.5 um taken with the InfraRed Array Camera aboard the Spitzer Space Telescope during the warm Spitzer mission and in the H and Ks bands with the Wide Field IR Camera at the Palomar 200-inch Hale Telescope. Read More

A large fraction of white dwarfs (WDs) may host planets in their habitable zones. These planets may provide our best chance to detect bio-markers on a transiting exoplanet, thanks to the diminished contrast ratio between the Earth-sized WD and its Earth-sized planets. The JWST is capable of obtaining the first spectroscopic measurements of such planets, yet there are no known planets around WDs. Read More

We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very low-mass companion: its large eccentricity (e~0. Read More

Since the discovery of the first exoplanet we have known that other planetary systems can look quite unlike our own. However, until recently we have only been able to probe the upper range of the planet size distribution. The high precision of the Kepler space telescope has allowed us to detect planets that are the size of Earth and somewhat smaller, but no previous planets have been found that are smaller than those we see in our own Solar System. Read More

We present Warm Spitzer/IRAC secondary eclipse time series photometry of three short-period transiting exoplanets, HAT-P-3b, HAT-P-4b and HAT-P-12b, in both the available 3.6 and 4.5 micron bands. Read More

The Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) observed 10 transits of XO-2b over a period of three years. We present measurements which confirm previous estimates of system parameters like the normalized semi-major axis (a/R_{*}), stellar density (\rho_{*}), impact parameter (b) and orbital inclination (i_{orb}). Our errors on system parameters like a/R_{*} and \rho_{*} have improved by ~40% compared to previous best ground-based measurements. Read More

We present photometry of the extrasolar planet WASP-5b in the 3.6 and 4.5 micron bands taken with the Spitzer Space Telescope's Infrared Array Camera as part of the extended warm mission. Read More