Eli Shechtman

Eli Shechtman
Are you Eli Shechtman?

Claim your profile, edit publications, add additional information:

Contact Details

Eli Shechtman

Pubs By Year

Pub Categories

Computer Science - Computer Vision and Pattern Recognition (12)
Computer Science - Human-Computer Interaction (1)
Computer Science - Learning (1)

Publications Authored By Eli Shechtman

Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other --- a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific disentangled representation of intrinsic face properties, including shape (i.e. Read More

This paper introduces a deep-learning approach to photographic style transfer that handles a large variety of image content while faithfully transferring the reference style. Our approach builds upon the recent work on painterly transfer that separates style from the content of an image by considering different layers of a neural network. However, as is, this approach is not suitable for photorealistic style transfer. Read More

Have you ever taken a picture only to find out that an unimportant background object ended up being overly salient? Or one of those team sports photos where your favorite player blends with the rest? Wouldn't it be nice if you could tweak these pictures just a little bit so that the distractor would be attenuated and your favorite player will stand-out among her peers? Manipulating images in order to control the saliency of objects is the goal of this paper. We propose an approach that considers the internal color and saliency properties of the image. It changes the saliency map via an optimization framework that relies on patch-based manipulation using only patches from within the same image to achieve realistic looking results. Read More

Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as object removal. While these learning-based methods are significantly more effective in capturing high-level features than prior techniques, they can only handle very low-resolution inputs due to memory limitations and difficulty in training. Even for slightly larger images, the inpainted regions would appear blurry and unpleasant boundaries become visible. Read More

Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method to introduce control over spatial location, colour information and across spatial scale. We demonstrate how this enhances the method by allowing high-resolution controlled stylisation and helps to alleviate common failure cases such as applying ground textures to sky regions. Read More

Realistic image manipulation is challenging because it requires modifying the image appearance in a user-controlled way, while preserving the realism of the result. Unless the user has considerable artistic skill, it is easy to "fall off" the manifold of natural images while editing. In this paper, we propose to learn the natural image manifold directly from data using a generative adversarial neural network. Read More

This note presents an extension to the neural artistic style transfer algorithm (Gatys et al.). The original algorithm transforms an image to have the style of another given image. Read More

Shadows often create unwanted artifacts in photographs, and removing them can be very challenging. Previous shadow removal methods often produce de-shadowed regions that are visually inconsistent with the rest of the image. In this work we propose a fully automatic shadow region harmonization approach that improves the appearance compatibility of the de-shadowed region as typically produced by previous methods. Read More

What makes an image appear realistic? In this work, we are answering this question from a data-driven perspective by learning the perception of visual realism directly from large amounts of data. In particular, we train a Convolutional Neural Network (CNN) model that distinguishes natural photographs from automatically generated composite images. The model learns to predict visual realism of a scene in terms of color, lighting and texture compatibility, without any human annotations pertaining to it. Read More

As font is one of the core design concepts, automatic font identification and similar font suggestion from an image or photo has been on the wish list of many designers. We study the Visual Font Recognition (VFR) problem, and advance the state-of-the-art remarkably by developing the DeepFont system. First of all, we build up the first available large-scale VFR dataset, named AdobeVFR, consisting of both labeled synthetic data and partially labeled real-world data. Read More

We address a challenging fine-grain classification problem: recognizing a font style from an image of text. In this task, it is very easy to generate lots of rendered font examples but very hard to obtain real-world labeled images. This real-to-synthetic domain gap caused poor generalization to new real data in previous methods (Chen et al. Read More

We present a domain adaption framework to address a domain mismatch between synthetic training and real-world testing data. We demonstrate our method on a challenging fine-grain classification problem: recognizing a font style from an image of text. In this task, it is very easy to generate lots of rendered font examples but very hard to obtain real-world labeled images. Read More

Knowing where people look is a useful tool in many various image and video applications. However, traditional gaze tracking hardware is expensive and requires local study participants, so acquiring gaze location data from a large number of participants is very problematic. In this work we propose a crowdsourced method for acquisition of gaze direction data from a virtually unlimited number of participants, using a robust self-reporting mechanism (see Figure 1). Read More