# E. Schulte - Jefferson Lab Hall A Collaboration

## Contact Details

NameE. Schulte |
||

AffiliationJefferson Lab Hall A Collaboration |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesMathematics - Combinatorics (22) Nuclear Experiment (22) Mathematics - Metric Geometry (21) High Energy Physics - Experiment (9) Nuclear Theory (2) Mathematics - Group Theory (2) Mathematics - Representation Theory (2) High Energy Physics - Phenomenology (2) Computer Science - Software Engineering (1) Physics - Instrumentation and Detectors (1) |

## Publications Authored By E. Schulte

Skeletal polyhedra are discrete structures made up of finite, flat or skew, or infinite, helical or zigzag, polygons as faces, with two faces on each edge and a circular vertex-figure at each vertex. When a variant of Wythoff's construction is applied to the forty-eight regular skeletal polyhedra (Grunbaum-Dress polyhedra) in ordinary space, new highly symmetric skeletal polyhedra arise as "truncations" of the original polyhedra. These Wythoffians are vertex-transitive and often feature vertex configurations with an attractive mix of different face shapes. Read More

Skeletal polyhedra and polygonal complexes are finite or infinite periodic structures in 3-space with interesting geometric, combinatorial, and algebraic properties. These structures can be viewed as finite or infinite periodic graphs (nets) equipped with a polyhedral superstructure imposed by the faces, allowed to be skew, zigzag, or helical. The article describes skeletal structures with maximal symmetry. Read More

**Authors:**X. Yan, K. Allada, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, C. Dutta, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, M. Huang, H. F Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, J. Katich, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, T. Liu, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. Munoz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. -C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, X. Qian, Y. Qiang, A. Rakhman, R. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Sirca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, W. A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, Y. Wang, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. Zhang, Y. -W. Zhang, B. Zhao, Y. X. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

**Category:**Nuclear Experiment

The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{\prime}\pi^{\pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9\,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0. Read More

**Authors:**V. Tvaskis, A. Tvaskis, I. Niculescu, D. Abbott, G. S. Adams, A. Afanasev, A. Ahmidouch, T. Angelescu, J. Arrington, R. Asaturyan, S. Avery, O. K. Baker, N. Benmouna, B. L. Berman, A. Biselli, H. P. Blok, W. U. Boeglin, P. E. Bosted, E. Brash, H. Breuer, G. Chang, N. Chant, M. E. Christy, S. H. Connell, M. M. Dalton, S. Danagoulian, D. Day, T. Dodario, J. A. Dunne, D. Dutta, N. El Khayari, R. Ent, H. C. Fenker, V. V. Frolov, D. Gaskell, K. Garrow, R. Gilman, P. Gueye, K. Hafidi, W. Hinton, R. J. Holt, T. Horn, G. M. Huber, H. Jackson, X. Jiang, M. K. Jones, K. Joo, J. J. Kelly, C. E. Keppel, J. Kuhn, E. Kinney, A. Klein, V. Kubarovsky, M. Liang, Y. Liang, G. Lolos, A. Lung, D. Mack, S. Malace, P. Markowitz, G. Mbianda, E. McGrath, D. Mckee, P. McKee, D. G. Meekins, H. Mkrtchyan, B. Moziak, J. Napolitano, T. Navasardyan, G. Niculescu, M. Nozar, T. Ostapenko, Z. Papandreou, D. Potterveld, P. E. Reimer, J. Reinhold, J. Roche, S. E. Rock, E. Schulte, E. Segbefia, C. Smith, G. R. Smith, P. Stoler, V. Tadevosyan, L. Tang, J. Telfeyan, L. Todor, M. Ungaro, A. Uzzle, S. Vidakovic, A. Villano, W. F. Vulcan, M. Wang, G. Warren, F. Wesselmann, B. Wojtsekhowski, S. A. Wood, C. Xu, C. Yan, L. Yuan, X. Zheng, B. Zihlmann, H. Zhu

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

The inductive blockwise Alperin weight condition is a system of conditions whose verification for all non-abelian finite simple groups would imply the blockwise Alperin weight conjecture. We establish this condition for the groups $G_2(q)$, $q \geq 5$, and $^3D_4(q)$ for all primes dividing their order. Read More

**Authors:**A. Blomberg, D. Anez, N. Sparveris, A. Sarty, M. Paolone, S. Gilad, D. Higinbotham, A. R. Abudureyimu, Z. Ahmed, H. Albataineh, K. Allada, B. Anderson, K. Aniol, J. Annand, T. Averett, H. Baghdasaryan, X. Bai, A. Beck, S. Beck, V. Bellini, F. Benmokhtar, W. Boeglin, C. M. Camacho, A. Camsonne, C. Chen, J. P. Chen, K. Chirapatpimol, E. Cisbani, M. Dalton, W. Deconinck, M. Defurne, R. De Leo, D. Flay, N. Fomin, M. Friend, S. Frullani, E. Fuchey, F. Garibaldi, R. Gilman, C. Gu, D. Hamilton, C. Hanretty, O. Hansen, M. Hashemi Shabestari, T. Holmstrom, M. Huang, S. Iqbal, N. Kalantarians, H. Kang, A. Kelleher, M. Khandaker, J. Leckey, J. LeRose, R. Lindgren, E. Long, J. Mammei, D. J. Margaziotis, A. Marti Jimenez-Arguello, Z. E. Meziani, M. Mihovilovic, N. Muangma, B. Norum, Nuruzzaman, K. Pan, S. Phillips, A. Polychronopoulou, I. Pomerantz, M. Posik, V. Punjabi, X. Qian, P. E. Reimer, S. Riordan, G. Ron, A. Saha, E. Schulte, L. Selvy, S. Sirca, J. Sjoegren, R. Subedi, V. Sulkosky, W. Tireman, D. Wang, J. Watson, L. Weinstein, B. Wojtsekhowski, W. Yan, I. Yaron, Z. Ye, X. Zhan, Y. Zhang, J. Zhang, B. Zhao, Z. Zhao, X. Zheng, P. Zhu

**Category:**Nuclear Experiment

We report on new p$(e,e^\prime p)\pi^\circ$ measurements at the $\Delta^{+}(1232)$ resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for chiral effective field theory calculations. The new data explore the low $Q^2$ dependence of the resonant quadrupole amplitudes while extending the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. Read More

We prove that every finite group is the automorphism group of a finite abstract polytope isomorphic to a face-to-face tessellation of a sphere by topological copies of convex polytopes. We also show that this abstract polytope may be realized as a convex polytope. Read More

**Authors:**The Jefferson Lab Hall A Collaboration, Y. X. Zhao, K. Allada, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, C. Dutta, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, M. Huang, H. F Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, J. Katich, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. MuÃ±oz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. -C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, X. Qian, Y. Qiang, A. Rakhman, R. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Å irca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, W. A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, Y. Wang, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. Zhang, Y. -W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

We report the measurement of beam-target double-spin asymmetries ($A_\text{LT}$) in the inclusive production of identified hadrons, $\vec{e}~$+$~^3\text{He}^{\uparrow}\rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized $^3\rm{He}$ target. Hadrons ($\pi^{\pm}$, $K^{\pm}$ and proton) were detected at 16$^{\circ}$ with an average momentum $<$$P_h$$>$=2. Read More

Every Ree group $R(q)$, with $q\neq 3$ an odd power of 3, is the automorphism group of an abstract regular polytope, and any such polytope is necessarily a regular polyhedron (a map on a surface). However, an almost simple group $G$ with $R(q) < G \leq \mathsf{Aut}(R(q))$ is not a C-group and therefore not the automorphism group of an abstract regular polytope of any rank. Read More

The article studies power complexes and generalized power complexes, and investigates the algebraic structure of their automorphism groups. The combinatorial incidence structures involved are cube-like, in the sense that they have many structural properties in common with higher-dimensional cubes and cubical tessellations on manifolds. Power complexes have repeatedly appeared in applications. Read More

Every n-edge colored n-regular graph G naturally gives rise to a simple abstract n-polytope, the colorful polytope of G, whose 1-skeleton is isomorphic to G. The paper describes colorful polytope versions of the associahedron and cyclohedron. Like their classical counterparts, the colorful associahedron and cyclohedron encode triangulations and flips, but now with the added feature that the diagonals of the triangulations are colored and adjacency of triangulations requires color preserving flips. Read More

**Authors:**Y. X. Zhao

^{1}, Y. Wang

^{2}, K. Allada

^{3}, K. Aniol

^{4}, J. R. M. Annand

^{5}, T. Averett

^{6}, F. Benmokhtar

^{7}, W. Bertozzi

^{8}, P. C. Bradshaw

^{9}, P. Bosted

^{10}, A. Camsonne

^{11}, M. Canan

^{12}, G. D. Cates

^{13}, C. Chen

^{14}, J. -P. Chen

^{15}, W. Chen

^{16}, K. Chirapatpimol

^{17}, E. Chudakov

^{18}, E. Cisbani

^{19}, J. C. Cornejo

^{20}, F. Cusanno

^{21}, M. M. Dalton

^{22}, W. Deconinck

^{23}, C. W. de Jager

^{24}, R. De Leo

^{25}, X. Deng

^{26}, A. Deur

^{27}, H. Ding

^{28}, P. A. M. Dolph

^{29}, C. Dutta

^{30}, D. Dutta

^{31}, L. El Fassi

^{32}, S. Frullani

^{33}, H. Gao

^{34}, F. Garibaldi

^{35}, D. Gaskell

^{36}, S. Gilad

^{37}, R. Gilman

^{38}, O. Glamazdin

^{39}, S. Golge

^{40}, L. Guo

^{41}, D. Hamilton

^{42}, O. Hansen

^{43}, D. W. Higinbotham

^{44}, T. Holmstrom

^{45}, J. Huang

^{46}, M. Huang

^{47}, H. F Ibrahim

^{48}, M. Iodice

^{49}, X. Jiang

^{50}, G. Jin

^{51}, M. K. Jones

^{52}, J. Katich

^{53}, A. Kelleher

^{54}, W. Kim

^{55}, A. Kolarkar

^{56}, W. Korsch

^{57}, J. J. LeRose

^{58}, X. Li

^{59}, Y. Li

^{60}, R. Lindgren

^{61}, N. Liyanage

^{62}, E. Long

^{63}, H. -J. Lu

^{64}, D. J. Margaziotis

^{65}, P. Markowitz

^{66}, S. Marrone

^{67}, D. McNulty

^{68}, Z. -E. Meziani

^{69}, R. Michaels

^{70}, B. Moffit

^{71}, C. MuÃ±oz Camacho

^{72}, S. Nanda

^{73}, A. Narayan

^{74}, V. Nelyubin

^{75}, B. Norum

^{76}, Y. Oh

^{77}, M. Osipenko

^{78}, D. Parno

^{79}, J. -C. Peng

^{80}, S. K. Phillips

^{81}, M. Posik

^{82}, A. J. R. Puckett

^{83}, X. Qian

^{84}, Y. Qiang

^{85}, A. Rakhman

^{86}, R. Ransome

^{87}, S. Riordan

^{88}, A. Saha

^{89}, B. Sawatzky

^{90}, E. Schulte

^{91}, A. Shahinyan

^{92}, M. H. Shabestari

^{93}, S. Å irca

^{94}, S. Stepanyan

^{95}, R. Subedi

^{96}, V. Sulkosky

^{97}, L. -G. Tang

^{98}, A. Tobias

^{99}, G. M. Urciuoli

^{100}, I. Vilardi

^{101}, K. Wang

^{102}, B. Wojtsekhowski

^{103}, X. Yan

^{104}, H. Yao

^{105}, Y. Ye

^{106}, Z. Ye

^{107}, L. Yuan

^{108}, X. Zhan

^{109}, Y. Zhang

^{110}, Y. -W. Zhang

^{111}, B. Zhao

^{112}, X. Zheng

^{113}, L. Zhu

^{114}, X. Zhu

^{115}, X. Zong

^{116}

**Affiliations:**

^{1}Jefferson Lab Hall A Collaboration,

^{2}Jefferson Lab Hall A Collaboration,

^{3}Jefferson Lab Hall A Collaboration,

^{4}Jefferson Lab Hall A Collaboration,

^{5}Jefferson Lab Hall A Collaboration,

^{6}Jefferson Lab Hall A Collaboration,

^{7}Jefferson Lab Hall A Collaboration,

^{8}Jefferson Lab Hall A Collaboration,

^{9}Jefferson Lab Hall A Collaboration,

^{10}Jefferson Lab Hall A Collaboration,

^{11}Jefferson Lab Hall A Collaboration,

^{12}Jefferson Lab Hall A Collaboration,

^{13}Jefferson Lab Hall A Collaboration,

^{14}Jefferson Lab Hall A Collaboration,

^{15}Jefferson Lab Hall A Collaboration,

^{16}Jefferson Lab Hall A Collaboration,

^{17}Jefferson Lab Hall A Collaboration,

^{18}Jefferson Lab Hall A Collaboration,

^{19}Jefferson Lab Hall A Collaboration,

^{20}Jefferson Lab Hall A Collaboration,

^{21}Jefferson Lab Hall A Collaboration,

^{22}Jefferson Lab Hall A Collaboration,

^{23}Jefferson Lab Hall A Collaboration,

^{24}Jefferson Lab Hall A Collaboration,

^{25}Jefferson Lab Hall A Collaboration,

^{26}Jefferson Lab Hall A Collaboration,

^{27}Jefferson Lab Hall A Collaboration,

^{28}Jefferson Lab Hall A Collaboration,

^{29}Jefferson Lab Hall A Collaboration,

^{30}Jefferson Lab Hall A Collaboration,

^{31}Jefferson Lab Hall A Collaboration,

^{32}Jefferson Lab Hall A Collaboration,

^{33}Jefferson Lab Hall A Collaboration,

^{34}Jefferson Lab Hall A Collaboration,

^{35}Jefferson Lab Hall A Collaboration,

^{36}Jefferson Lab Hall A Collaboration,

^{37}Jefferson Lab Hall A Collaboration,

^{38}Jefferson Lab Hall A Collaboration,

^{39}Jefferson Lab Hall A Collaboration,

^{40}Jefferson Lab Hall A Collaboration,

^{41}Jefferson Lab Hall A Collaboration,

^{42}Jefferson Lab Hall A Collaboration,

^{43}Jefferson Lab Hall A Collaboration,

^{44}Jefferson Lab Hall A Collaboration,

^{45}Jefferson Lab Hall A Collaboration,

^{46}Jefferson Lab Hall A Collaboration,

^{47}Jefferson Lab Hall A Collaboration,

^{48}Jefferson Lab Hall A Collaboration,

^{49}Jefferson Lab Hall A Collaboration,

^{50}Jefferson Lab Hall A Collaboration,

^{51}Jefferson Lab Hall A Collaboration,

^{52}Jefferson Lab Hall A Collaboration,

^{53}Jefferson Lab Hall A Collaboration,

^{54}Jefferson Lab Hall A Collaboration,

^{55}Jefferson Lab Hall A Collaboration,

^{56}Jefferson Lab Hall A Collaboration,

^{57}Jefferson Lab Hall A Collaboration,

^{58}Jefferson Lab Hall A Collaboration,

^{59}Jefferson Lab Hall A Collaboration,

^{60}Jefferson Lab Hall A Collaboration,

^{61}Jefferson Lab Hall A Collaboration,

^{62}Jefferson Lab Hall A Collaboration,

^{63}Jefferson Lab Hall A Collaboration,

^{64}Jefferson Lab Hall A Collaboration,

^{65}Jefferson Lab Hall A Collaboration,

^{66}Jefferson Lab Hall A Collaboration,

^{67}Jefferson Lab Hall A Collaboration,

^{68}Jefferson Lab Hall A Collaboration,

^{69}Jefferson Lab Hall A Collaboration,

^{70}Jefferson Lab Hall A Collaboration,

^{71}Jefferson Lab Hall A Collaboration,

^{72}Jefferson Lab Hall A Collaboration,

^{73}Jefferson Lab Hall A Collaboration,

^{74}Jefferson Lab Hall A Collaboration,

^{75}Jefferson Lab Hall A Collaboration,

^{76}Jefferson Lab Hall A Collaboration,

^{77}Jefferson Lab Hall A Collaboration,

^{78}Jefferson Lab Hall A Collaboration,

^{79}Jefferson Lab Hall A Collaboration,

^{80}Jefferson Lab Hall A Collaboration,

^{81}Jefferson Lab Hall A Collaboration,

^{82}Jefferson Lab Hall A Collaboration,

^{83}Jefferson Lab Hall A Collaboration,

^{84}Jefferson Lab Hall A Collaboration,

^{85}Jefferson Lab Hall A Collaboration,

^{86}Jefferson Lab Hall A Collaboration,

^{87}Jefferson Lab Hall A Collaboration,

^{88}Jefferson Lab Hall A Collaboration,

^{89}Jefferson Lab Hall A Collaboration,

^{90}Jefferson Lab Hall A Collaboration,

^{91}Jefferson Lab Hall A Collaboration,

^{92}Jefferson Lab Hall A Collaboration,

^{93}Jefferson Lab Hall A Collaboration,

^{94}Jefferson Lab Hall A Collaboration,

^{95}Jefferson Lab Hall A Collaboration,

^{96}Jefferson Lab Hall A Collaboration,

^{97}Jefferson Lab Hall A Collaboration,

^{98}Jefferson Lab Hall A Collaboration,

^{99}Jefferson Lab Hall A Collaboration,

^{100}Jefferson Lab Hall A Collaboration,

^{101}Jefferson Lab Hall A Collaboration,

^{102}Jefferson Lab Hall A Collaboration,

^{103}Jefferson Lab Hall A Collaboration,

^{104}Jefferson Lab Hall A Collaboration,

^{105}Jefferson Lab Hall A Collaboration,

^{106}Jefferson Lab Hall A Collaboration,

^{107}Jefferson Lab Hall A Collaboration,

^{108}Jefferson Lab Hall A Collaboration,

^{109}Jefferson Lab Hall A Collaboration,

^{110}Jefferson Lab Hall A Collaboration,

^{111}Jefferson Lab Hall A Collaboration,

^{112}Jefferson Lab Hall A Collaboration,

^{113}Jefferson Lab Hall A Collaboration,

^{114}Jefferson Lab Hall A Collaboration,

^{115}Jefferson Lab Hall A Collaboration,

^{116}Jefferson Lab Hall A Collaboration

**Category:**Nuclear Experiment

We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized $^3{\rm{He}}$ target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1$<$$x_{bj}$$<$0. Read More

The paper establishes that the rank of a regular polygonal complex in 3-space E^3 cannot exceed 4, and that the only regular polygonal complexes of rank 4 in 3-space are the eight regular 4-apeirotopes. Read More

Skeletal polyhedra and polygonal complexes in ordinary Euclidean 3-space are finite or infinite 3-periodic structures with interesting geometric, combinatorial, and algebraic properties. They can be viewed as finite or infinite 3-periodic graphs (nets) equipped with additional structure imposed by the faces, allowed to be skew, zig-zag, or helical. A polyhedron or complex is "regular" if its geometric symmetry group is transitive on the flags (incident vertex-edge-face triples). Read More

**Authors:**I. Korover N. Muangma, O. Hen, R. Shneor, V. Sulkosky, A. Kelleher, S. Gilad, D. W. Higinbotham, E. Piasetzky J. Watson, S. Wood, Abdurahim Rakhman, P. Aguilera, Z. Ahmed, H. Albataineh, K. Allada, B. Anderson, D. Anez, K. Aniol, J. Annand, W. Armstrong, J. Arrington, T. Averett, T. Badman, H. Baghdasaryan, X. Bai, A. Beck, S. Beck, V. Bellini, F. Benmokhtar, W. Bertozzi, J. Bittner, W. Boeglin, A. Camsonne, C. Chen, J. -P. Chen, K. Chirapatpimol, E. Cisbani, M. M. Dalton, A. Daniel, D. Day, C. W. de Jager, R. De Leo, W. Deconinck, M. Defurne, D. Flay, N. Fomin, M. Friend, S. Frullani, E. Fuchey, F. Garibaldi, D. Gaskell, R. Gilman, O. Glamazdin, C. Gu, P. Gueye, D. Hamilton, C. Hanretty, O. Hansen, M. Hashemi Shabestari, T. Holmstrom, M. Huang, S. Iqbal, G. Jin, N. Kalantarians, H. Kang, M. Khandaker, J. LeRose, J. Leckey, R. Lindgren, E. Long, J. Mammei, D. J. Margaziotis, P. Markowitz, A. Marti Jimenez-Arguello, D. Meekins, Z. Meziani, R. Michaels, M. Mihovilovic, P. Monaghan, C. Munoz Camacho, B. Norum, Nuruzzaman, K. Pan, S. Phillips, I. Pomerantz, M. Posik, V. Punjabi, X. Qian, Y. Qiang, X. Qiu, P. E. Reimer, S. Riordan, G. Ron, O. Rondon-Aramayo, A. Saha, E. Schulte, L. Selvy, A. Shahinyan, S. Sirca, J. Sjoegren, K. Slifer, P. Solvignon, N. Sparveris, R. Subedi, W. Tireman, D. Wang, L. B. Weinstein, B. Wojtsekhowski, W. Yan, I. Yaron, Z. Ye, X. Zhan, J. Zhang, Y. Zhang, B. Zhao, Z. Zhao, X. Zheng, P. Zhu, R. Zielinski

**Category:**Nuclear Experiment

We studied simultaneously the 4He(e,e'p), 4He(e,e'pp), and 4He(e,e'pn) reactions at Q^2=2 [GeV/c]2 and x_B>1, for a (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Read More

**Authors:**Y. Zhang, X. Qian, K. Allada, C. Dutta, J. Huang, J. Katich, Y. Wang, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, M. Huang, H. F. Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. MuÃ±oz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, Y. Qiang, A. Rakhman, R. D. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Sirca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, W. A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. -W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

**Category:**Nuclear Experiment

An experiment to measure single-spin asymmetries in semi-inclusive production
of charged pions in deep-inelastic scattering on a transversely polarized
$^3$He target was performed at Jefferson Lab in the kinematic region of
$0.16

**Authors:**K. Allada

^{1}, Y. X. Zhao

^{2}, K. Aniol

^{3}, J. R. M. Annand

^{4}, T. Averett

^{5}, F. Benmokhtar

^{6}, W. Bertozzi

^{7}, P. C. Bradshaw

^{8}, P. Bosted

^{9}, A. Camsonne

^{10}, M. Canan

^{11}, G. D. Cates

^{12}, C. Chen

^{13}, J. -P. Chen

^{14}, W. Chen

^{15}, K. Chirapatpimol

^{16}, E. Chudakov

^{17}, E. Cisbani

^{18}, J. C. Cornejo

^{19}, F. Cusanno

^{20}, M. Dalton

^{21}, W. Deconinck

^{22}, C. W. de Jager

^{23}, R. De Leo

^{24}, X. Deng

^{25}, A. Deur

^{26}, H. Ding

^{27}, P. A. M. Dolph

^{28}, C. Dutta

^{29}, D. Dutta

^{30}, L. El Fassi

^{31}, S. Frullani

^{32}, H. Gao

^{33}, F. Garibaldi

^{34}, D. Gaskell

^{35}, S. Gilad

^{36}, R. Gilman

^{37}, O. Glamazdin

^{38}, S. Golge

^{39}, L. Guo

^{40}, D. Hamilton

^{41}, O. Hansen

^{42}, D. W. Higinbotham

^{43}, T. Holmstrom

^{44}, J. Huang

^{45}, M. Huang

^{46}, H. F Ibrahim

^{47}, M. Iodice

^{48}, X. Jiang

^{49}, G. Jin

^{50}, M. K. Jones

^{51}, J. Katich

^{52}, A. Kelleher

^{53}, W. Kim

^{54}, A. Kolarkar

^{55}, W. Korsch

^{56}, J. J. LeRose

^{57}, X. Li

^{58}, Y. Li

^{59}, R. Lindgren

^{60}, N. Liyanage

^{61}, E. Long

^{62}, H. -J. Lu

^{63}, D. J. Margaziotis

^{64}, P. Markowitz

^{65}, S. Marrone

^{66}, D. McNulty

^{67}, Z. -E. Meziani

^{68}, R. Michaels

^{69}, B. Moffit

^{70}, C. Munoz Camacho

^{71}, S. Nanda

^{72}, A. Narayan

^{73}, V. Nelyubin

^{74}, B. Norum

^{75}, Y. Oh

^{76}, M. Osipenko

^{77}, D. Parno

^{78}, J. -C. Peng

^{79}, S. K. Phillips

^{80}, M. Posik

^{81}, A. J. R. Puckett

^{82}, X. Qian

^{83}, Y. Qiang

^{84}, A. Rakhman

^{85}, R. Ransome

^{86}, S. Riordan

^{87}, A. Saha

^{88}, B. Sawatzky

^{89}, E. Schulte

^{90}, A. Shahinyan

^{91}, M. H. Shabestari

^{92}, S. Sirca

^{93}, S. Stepanyan

^{94}, R. Subedi

^{95}, V. Sulkosky

^{96}, L. -G. Tang

^{97}, A. Tobias

^{98}, G. M. Urciuoli

^{99}, I. Vilardi

^{100}, K. Wang

^{101}, Y. Wang

^{102}, B. Wojtsekhowski

^{103}, X. Yan

^{104}, H. Yao

^{105}, Y. Ye

^{106}, Z. Ye

^{107}, L. Yuan

^{108}, X. Zhan

^{109}, Y. Zhang

^{110}, Y. -W. Zhang

^{111}, B. Zhao

^{112}, X. Zheng

^{113}, L. Zhu

^{114}, X. Zhu

^{115}, X. Zong

^{116}

**Affiliations:**

^{1}Jefferson Lab Hall A Collaboration,

^{2}Jefferson Lab Hall A Collaboration,

^{3}Jefferson Lab Hall A Collaboration,

^{4}Jefferson Lab Hall A Collaboration,

^{5}Jefferson Lab Hall A Collaboration,

^{6}Jefferson Lab Hall A Collaboration,

^{7}Jefferson Lab Hall A Collaboration,

^{8}Jefferson Lab Hall A Collaboration,

^{9}Jefferson Lab Hall A Collaboration,

^{10}Jefferson Lab Hall A Collaboration,

^{11}Jefferson Lab Hall A Collaboration,

^{12}Jefferson Lab Hall A Collaboration,

^{13}Jefferson Lab Hall A Collaboration,

^{14}Jefferson Lab Hall A Collaboration,

^{15}Jefferson Lab Hall A Collaboration,

^{16}Jefferson Lab Hall A Collaboration,

^{17}Jefferson Lab Hall A Collaboration,

^{18}Jefferson Lab Hall A Collaboration,

^{19}Jefferson Lab Hall A Collaboration,

^{20}Jefferson Lab Hall A Collaboration,

^{21}Jefferson Lab Hall A Collaboration,

^{22}Jefferson Lab Hall A Collaboration,

^{23}Jefferson Lab Hall A Collaboration,

^{24}Jefferson Lab Hall A Collaboration,

^{25}Jefferson Lab Hall A Collaboration,

^{26}Jefferson Lab Hall A Collaboration,

^{27}Jefferson Lab Hall A Collaboration,

^{28}Jefferson Lab Hall A Collaboration,

^{29}Jefferson Lab Hall A Collaboration,

^{30}Jefferson Lab Hall A Collaboration,

^{31}Jefferson Lab Hall A Collaboration,

^{32}Jefferson Lab Hall A Collaboration,

^{33}Jefferson Lab Hall A Collaboration,

^{34}Jefferson Lab Hall A Collaboration,

^{35}Jefferson Lab Hall A Collaboration,

^{36}Jefferson Lab Hall A Collaboration,

^{37}Jefferson Lab Hall A Collaboration,

^{38}Jefferson Lab Hall A Collaboration,

^{39}Jefferson Lab Hall A Collaboration,

^{40}Jefferson Lab Hall A Collaboration,

^{41}Jefferson Lab Hall A Collaboration,

^{42}Jefferson Lab Hall A Collaboration,

^{43}Jefferson Lab Hall A Collaboration,

^{44}Jefferson Lab Hall A Collaboration,

^{45}Jefferson Lab Hall A Collaboration,

^{46}Jefferson Lab Hall A Collaboration,

^{47}Jefferson Lab Hall A Collaboration,

^{48}Jefferson Lab Hall A Collaboration,

^{49}Jefferson Lab Hall A Collaboration,

^{50}Jefferson Lab Hall A Collaboration,

^{51}Jefferson Lab Hall A Collaboration,

^{52}Jefferson Lab Hall A Collaboration,

^{53}Jefferson Lab Hall A Collaboration,

^{54}Jefferson Lab Hall A Collaboration,

^{55}Jefferson Lab Hall A Collaboration,

^{56}Jefferson Lab Hall A Collaboration,

^{57}Jefferson Lab Hall A Collaboration,

^{58}Jefferson Lab Hall A Collaboration,

^{59}Jefferson Lab Hall A Collaboration,

^{60}Jefferson Lab Hall A Collaboration,

^{61}Jefferson Lab Hall A Collaboration,

^{62}Jefferson Lab Hall A Collaboration,

^{63}Jefferson Lab Hall A Collaboration,

^{64}Jefferson Lab Hall A Collaboration,

^{65}Jefferson Lab Hall A Collaboration,

^{66}Jefferson Lab Hall A Collaboration,

^{67}Jefferson Lab Hall A Collaboration,

^{68}Jefferson Lab Hall A Collaboration,

^{69}Jefferson Lab Hall A Collaboration,

^{70}Jefferson Lab Hall A Collaboration,

^{71}Jefferson Lab Hall A Collaboration,

^{72}Jefferson Lab Hall A Collaboration,

^{73}Jefferson Lab Hall A Collaboration,

^{74}Jefferson Lab Hall A Collaboration,

^{75}Jefferson Lab Hall A Collaboration,

^{76}Jefferson Lab Hall A Collaboration,

^{77}Jefferson Lab Hall A Collaboration,

^{78}Jefferson Lab Hall A Collaboration,

^{79}Jefferson Lab Hall A Collaboration,

^{80}Jefferson Lab Hall A Collaboration,

^{81}Jefferson Lab Hall A Collaboration,

^{82}Jefferson Lab Hall A Collaboration,

^{83}Jefferson Lab Hall A Collaboration,

^{84}Jefferson Lab Hall A Collaboration,

^{85}Jefferson Lab Hall A Collaboration,

^{86}Jefferson Lab Hall A Collaboration,

^{87}Jefferson Lab Hall A Collaboration,

^{88}Jefferson Lab Hall A Collaboration,

^{89}Jefferson Lab Hall A Collaboration,

^{90}Jefferson Lab Hall A Collaboration,

^{91}Jefferson Lab Hall A Collaboration,

^{92}Jefferson Lab Hall A Collaboration,

^{93}Jefferson Lab Hall A Collaboration,

^{94}Jefferson Lab Hall A Collaboration,

^{95}Jefferson Lab Hall A Collaboration,

^{96}Jefferson Lab Hall A Collaboration,

^{97}Jefferson Lab Hall A Collaboration,

^{98}Jefferson Lab Hall A Collaboration,

^{99}Jefferson Lab Hall A Collaboration,

^{100}Jefferson Lab Hall A Collaboration,

^{101}Jefferson Lab Hall A Collaboration,

^{102}Jefferson Lab Hall A Collaboration,

^{103}Jefferson Lab Hall A Collaboration,

^{104}Jefferson Lab Hall A Collaboration,

^{105}Jefferson Lab Hall A Collaboration,

^{106}Jefferson Lab Hall A Collaboration,

^{107}Jefferson Lab Hall A Collaboration,

^{108}Jefferson Lab Hall A Collaboration,

^{109}Jefferson Lab Hall A Collaboration,

^{110}Jefferson Lab Hall A Collaboration,

^{111}Jefferson Lab Hall A Collaboration,

^{112}Jefferson Lab Hall A Collaboration,

^{113}Jefferson Lab Hall A Collaboration,

^{114}Jefferson Lab Hall A Collaboration,

^{115}Jefferson Lab Hall A Collaboration,

^{116}Jefferson Lab Hall A Collaboration

We report the first measurement of target single-spin asymmetries (A$_N$) in the inclusive hadron production reaction, $e~$+$~^3\text{He}^{\uparrow}\rightarrow h+X$, using a transversely polarized $^3$He target. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Read More

**Authors:**J. Katich, X. Qian, Y. X. Zhao, K. Allada, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, C. Dutta, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, M. Huang, H. F. Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. MuÅ„oz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, Y. Qiang, A. Rakhman, R. D. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Å irca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, Y. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. Zhang, Y. -W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

**Category:**Nuclear Experiment

We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction $^3$He$^{\uparrow}\left(e,e' \right)X$ on a polarized $^3$He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be non-zero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5. Read More

The paper surveys highlights of the ongoing program to classify discrete polyhedral structures in Euclidean 3-space by distinguished transitivity properties of their symmetry groups, focussing in particular on various aspects of the classification of regular polygonal complexes, chiral polyhedra, and more generally, two-orbit polyhedra. Read More

We investigate simple endotrivial modules of finite quasi-simple groups and classify them in several important cases. This is motivated by a recent result of Robinson showing that simple endotrivial modules of most groups come from quasi-simple groups. Read More

**Authors:**The MINERvA collaboration, L. Fields, J. Chvojka, L. Aliaga, O. Altinok, B. Baldin, A. Baumbaugh, A. Bodek, D. Boehnlein, S. Boyd, R. Bradford, W. K. Brooks, H. Budd, A. Butkevich, D. A. Martinez Caicedo, C. M. Castromonte, M. E. Christy, H. Chung, M. Clark, H. da Motta, D. S. Damiani, I. Danko, M. Datta, M. Day, R. DeMaat, J. Devan, E. Draeger, S. A. Dytman, G. A. DÃaz, B. Eberly, D. A. Edmondson, J. Felix, T. Fitzpatrick, G. A. Fiorentini, A. M. Gago, H. Gallagher, C. A. George, J. A. Gielata, C. Gingu, B. Gobbi, R. Gran, N. Grossman, J. Hanson, D. A. Harris, J. Heaton, A. Higuera, I. J. Howley, K. Hurtado, M. Jerkins, T. Kafka, J. Kaisen, M. O. Kanter, C. E. Keppel, J. Kilmer, M. Kordosky, A. H. Krajeski, S. A. Kulagin, T. Le, H. Lee, A. G. Leister, G. Locke, G. Maggi, E. Maher, S. Manly, W. A. Mann, C. M. Marshall, K. S. McFarland, C. L. McGivern, A. M. McGowan, A. Mislivec, J. G. MorfÃn, J. Mousseau, D. Naples, J. K. Nelson, G. Niculescu, I. Niculescu, N. Ochoa, C. D. O'Connor, J. Olsen, B. Osmanov, J. Osta, J. L. Palomino, V. Paolone, J. Park, C. E. Patrick, G. N. Perdue, C. PeÃ±a, L. Rakotondravohitra, R. D. Ransome, H. Ray, L. Ren, P. A. Rodrigues, C. Rude, K. E. Sassin, H. Schellman, D. W. Schmitz, R. M. Schneider, E. C. Schulte, C. Simon, F. D. Snider, M. C. Snyder, J. T. Sobczyk, C. J. Solano Salinas, N. Tagg, W. Tan, B. G. Tice, G. Tzanakos, J. P. VelÃ¡squez, J. Walding, T. Walton, J. Wolcott, B. A. Wolthuis, N. Woodward, G. Zavala, H. B. Zeng, D. Zhang, L. Y. Zhu, B. P. Ziemer

We have isolated muon anti-neutrino charged-current quasi-elastic interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross-section, d{\sigma}/dQ^2, and compare to several theoretical models of quasi-elastic scattering. Good agreement is obtained with a model where the nucleon axial mass, M_A, is set to 0. Read More

**Authors:**The MINERvA collaboration, G. A. Fiorentini, D. W. Schmitz, P. A. Rodrigues, L. Aliaga, O. Altinok, B. Baldin, A. Baumbaugh, A. Bodek, D. Boehnlein, S. Boyd, R. Bradford, W. K. Brooks, H. Budd, A. Butkevich, D. A. Martinez Caicedo, C. M. Castromonte, M. E. Christy, H. Chung, J. Chvojka, M. Clark, H. da Motta, D. S. Damiani, I. Danko, M. Datta, M. Day, R. DeMaat, J. Devan, E. Draeger, S. A. Dytman, G. A. DÃaz, B. Eberly, D. A. Edmondson, J. Felix, T. Fitzpatrick, L. Fields, A. M. Gago, H. Gallagher, C. A. George, J. A. Gielata, C. Gingu, B. Gobbi, R. Gran, N. Grossman, J. Hanson, D. A. Harris, J. Heaton, A. Higuera, I. J. Howley, K. Hurtado, M. Jerkins, T. Kafka, J. Kaisen, M. O. Kanter, C. E. Keppel, J. Kilmer, M. Kordosky, A. H. Krajeski, S. A. Kulagin, T. Le, H. Lee, A. G. Leister, G. Locke, G. Maggi, E. Maher, S. Manly, W. A. Mann, C. M. Marshall, K. S. McFarland, C. L. McGivern, A. M. McGowan, A. Mislivec, J. G. MorfÅ„, J. Mousseau, D. Naples, J. K. Nelson, G. Niculescu, I. Niculescu, N. Ochoa, C. D. O'Connor, J. Olsen, B. Osmanov, J. Osta, J. L. Palomino, V. Paolone, J. Park, C. E. Patrick, G. N. Perdue, C. PeÃ±a, L. Rakotondravohitra, R. D. Ransome, H. Ray, L. Ren, C. Rude, K. E. Sassin, H. Schellman, R. M. Schneider, E. C. Schulte, C. Simon, F. D. Snider, M. C. Snyder, J. T. Sobczyk, C. J. Solano Salinas, N. Tagg, W. Tan, B. G. Tice, G. Tzanakos, J. P. VelÃ¡squez, J. Walding, T. Walton, J. Wolcott, B. A. Wolthuis, N. Woodward, G. Zavala, H. B. Zeng, D. Zhang, L. Y. Zhu, B. P. Ziemer

We report a study of muon neutrino charged-current quasi-elastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a {\mu}^- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross-section, d{\sigma}/dQ^2, and study the low energy particle content of the final state. Read More

**Authors:**I. Pomerantz

^{1}, Y. Ilieva

^{2}, R. Gilman

^{3}, D. W. Higinbotham

^{4}, E. Piasetzky

^{5}, S. Strauch

^{6}, K. P. Adhikari

^{7}, M. Aghasyan

^{8}, K. Allada

^{9}, M. J. Amaryan

^{10}, S. Anefalos Pereira

^{11}, M. Anghinolfi

^{12}, H. Baghdasaryan

^{13}, J. Ball

^{14}, N. A. Baltzell

^{15}, M. Battaglieri

^{16}, V. Batourine

^{17}, A. Beck

^{18}, S. Beck

^{19}, I. Bedlinskiy

^{20}, B. L. Berman

^{21}, A. S. Biselli

^{22}, W. Boeglin

^{23}, J. Bono

^{24}, C. Bookwalter

^{25}, S. Boiarinov

^{26}, W. J. Briscoe

^{27}, W. K. Brooks

^{28}, N. Bubis

^{29}, V. Burkert

^{30}, A. Camsonne

^{31}, M. Canan

^{32}, D. S. Carman

^{33}, A. Celentano

^{34}, S. Chandavar

^{35}, G. Charles

^{36}, K. Chirapatpimol

^{37}, E. Cisbani

^{38}, P. L. Cole

^{39}, M. Contalbrigo

^{40}, V. Crede

^{41}, F. Cusanno

^{42}, A. D'Angelo

^{43}, A. Daniel

^{44}, N. Dashyan

^{45}, C. W. de Jager

^{46}, R. De Vita

^{47}, E. De Sanctis

^{48}, A. Deur

^{49}, C. Djalali

^{50}, G. E. Dodge

^{51}, D. Doughty

^{52}, R. Dupre

^{53}, C. Dutta

^{54}, H. Egiyan

^{55}, A. El Alaoui

^{56}, L. El Fassi

^{57}, P. Eugenio

^{58}, G. Fedotov

^{59}, S. Fegan

^{60}, J. A. Fleming

^{61}, A. Fradi

^{62}, F. Garibaldi

^{63}, O. Geagla

^{64}, N. Gevorgyan

^{65}, K. L. Giovanetti

^{66}, F. X. Girod

^{67}, J. Glister

^{68}, J. T. Goetz

^{69}, W. Gohn

^{70}, E. Golovatch

^{71}, R. W. Gothe

^{72}, K. A. Griffioen

^{73}, B. Guegan

^{74}, M. Guidal

^{75}, L. Guo

^{76}, K. Hafidi

^{77}, H. Hakobyan

^{78}, N. Harrison

^{79}, D. Heddle

^{80}, K. Hicks

^{81}, D. Ho

^{82}, M. Holtrop

^{83}, C. E. Hyde

^{84}, D. G. Ireland

^{85}, B. S. Ishkhanov

^{86}, E. L. Isupov

^{87}, X. Jiang

^{88}, H. S. Jo

^{89}, K. Joo

^{90}, A. T. Katramatou

^{91}, D. Keller

^{92}, M. Khandaker

^{93}, P. Khetarpal

^{94}, E. Khrosinkova

^{95}, A. Kim

^{96}, W. Kim

^{97}, F. J. Klein

^{98}, S. Koirala

^{99}, A. Kubarovsky

^{100}, V. Kubarovsky

^{101}, S. V. Kuleshov

^{102}, N. D. Kvaltine

^{103}, B. Lee

^{104}, J. J. LeRose

^{105}, S. Lewis

^{106}, R. Lindgren

^{107}, K. Livingston

^{108}, H. Y. Lu

^{109}, I. J. D. MacGregor

^{110}, Y. Mao

^{111}, D. Martinez

^{112}, M. Mayer

^{113}, E. McCullough

^{114}, B. McKinnon

^{115}, D. Meekins

^{116}, C. A. Meyer

^{117}, R. Michaels

^{118}, T. Mineeva

^{119}, M. Mirazita

^{120}, B. Moffit

^{121}, V. Mokeev

^{122}, R. A. Montgomery

^{123}, H. Moutarde

^{124}, E. Munevar

^{125}, C. Munoz Camacho

^{126}, P. Nadel-Turonski

^{127}, R. Nasseripour

^{128}, C. S. Nepali

^{129}, S. Niccolai

^{130}, G. Niculescu

^{131}, I. Niculescu

^{132}, M. Osipenko

^{133}, A. I. Ostrovidov

^{134}, L. L. Pappalardo

^{135}, R. Paremuzyan

^{136}, K. Park

^{137}, S. Park

^{138}, G. G. Petratos

^{139}, E. Phelps

^{140}, S. Pisano

^{141}, O. Pogorelko

^{142}, S. Pozdniakov

^{143}, S. Procureur

^{144}, D. Protopopescu

^{145}, A. J. R. Puckett

^{146}, X. Qian

^{147}, Y. Qiang

^{148}, G. Ricco

^{149}, D. Rimal

^{150}, M. Ripani

^{151}, B. G. Ritchie

^{152}, I. Rodriguez

^{153}, G. Ron

^{154}, G. Rosner

^{155}, P. Rossi

^{156}, F. Sabatie

^{157}, A. Saha

^{158}, M. S. Saini

^{159}, A. J. Sarty

^{160}, B. Sawatzky

^{161}, N. A. Saylor

^{162}, D. Schott

^{163}, E. Schulte

^{164}, R. A. Schumacher

^{165}, E. Seder

^{166}, H. Seraydaryan

^{167}, R. Shneor

^{168}, G. D. Smith

^{169}, D. Sokhan

^{170}, N. Sparveris

^{171}, S. S. Stepanyan

^{172}, S. Stepanyan

^{173}, P. Stoler

^{174}, R. Subedi

^{175}, V. Sulkosky

^{176}, M. Taiuti

^{177}, W. Tang

^{178}, C. E. Taylor

^{179}, S. Tkachenko

^{180}, M. Ungaro

^{181}, B. Vernarsky

^{182}, M. F. Vineyard

^{183}, H. Voskanyan

^{184}, E. Voutier

^{185}, N. K. Walford

^{186}, Y. Wang

^{187}, D. P. Watts

^{188}, L. B. Weinstein

^{189}, D. P. Weygand

^{190}, B. Wojtsekhowski

^{191}, M. H. Wood

^{192}, X. Yan

^{193}, H. Yao

^{194}, N. Zachariou

^{195}, X. Zhan

^{196}, J. Zhang

^{197}, Z. W. Zhao

^{198}, X. Zheng

^{199}, I. Zonta

^{200}

**Affiliations:**

^{1}The CLAS and Hall-A Collaborations,

^{2}The CLAS and Hall-A Collaborations,

^{3}The CLAS and Hall-A Collaborations,

^{4}The CLAS and Hall-A Collaborations,

^{5}The CLAS and Hall-A Collaborations,

^{6}The CLAS and Hall-A Collaborations,

^{7}The CLAS and Hall-A Collaborations,

^{8}The CLAS and Hall-A Collaborations,

^{9}The CLAS and Hall-A Collaborations,

^{10}The CLAS and Hall-A Collaborations,

^{11}The CLAS and Hall-A Collaborations,

^{12}The CLAS and Hall-A Collaborations,

^{13}The CLAS and Hall-A Collaborations,

^{14}The CLAS and Hall-A Collaborations,

^{15}The CLAS and Hall-A Collaborations,

^{16}The CLAS and Hall-A Collaborations,

^{17}The CLAS and Hall-A Collaborations,

^{18}The CLAS and Hall-A Collaborations,

^{19}The CLAS and Hall-A Collaborations,

^{20}The CLAS and Hall-A Collaborations,

^{21}The CLAS and Hall-A Collaborations,

^{22}The CLAS and Hall-A Collaborations,

^{23}The CLAS and Hall-A Collaborations,

^{24}The CLAS and Hall-A Collaborations,

^{25}The CLAS and Hall-A Collaborations,

^{26}The CLAS and Hall-A Collaborations,

^{27}The CLAS and Hall-A Collaborations,

^{28}The CLAS and Hall-A Collaborations,

^{29}The CLAS and Hall-A Collaborations,

^{30}The CLAS and Hall-A Collaborations,

^{31}The CLAS and Hall-A Collaborations,

^{32}The CLAS and Hall-A Collaborations,

^{33}The CLAS and Hall-A Collaborations,

^{34}The CLAS and Hall-A Collaborations,

^{35}The CLAS and Hall-A Collaborations,

^{36}The CLAS and Hall-A Collaborations,

^{37}The CLAS and Hall-A Collaborations,

^{38}The CLAS and Hall-A Collaborations,

^{39}The CLAS and Hall-A Collaborations,

^{40}The CLAS and Hall-A Collaborations,

^{41}The CLAS and Hall-A Collaborations,

^{42}The CLAS and Hall-A Collaborations,

^{43}The CLAS and Hall-A Collaborations,

^{44}The CLAS and Hall-A Collaborations,

^{45}The CLAS and Hall-A Collaborations,

^{46}The CLAS and Hall-A Collaborations,

^{47}The CLAS and Hall-A Collaborations,

^{48}The CLAS and Hall-A Collaborations,

^{49}The CLAS and Hall-A Collaborations,

^{50}The CLAS and Hall-A Collaborations,

^{51}The CLAS and Hall-A Collaborations,

^{52}The CLAS and Hall-A Collaborations,

^{53}The CLAS and Hall-A Collaborations,

^{54}The CLAS and Hall-A Collaborations,

^{55}The CLAS and Hall-A Collaborations,

^{56}The CLAS and Hall-A Collaborations,

^{57}The CLAS and Hall-A Collaborations,

^{58}The CLAS and Hall-A Collaborations,

^{59}The CLAS and Hall-A Collaborations,

^{60}The CLAS and Hall-A Collaborations,

^{61}The CLAS and Hall-A Collaborations,

^{62}The CLAS and Hall-A Collaborations,

^{63}The CLAS and Hall-A Collaborations,

^{64}The CLAS and Hall-A Collaborations,

^{65}The CLAS and Hall-A Collaborations,

^{66}The CLAS and Hall-A Collaborations,

^{67}The CLAS and Hall-A Collaborations,

^{68}The CLAS and Hall-A Collaborations,

^{69}The CLAS and Hall-A Collaborations,

^{70}The CLAS and Hall-A Collaborations,

^{71}The CLAS and Hall-A Collaborations,

^{72}The CLAS and Hall-A Collaborations,

^{73}The CLAS and Hall-A Collaborations,

^{74}The CLAS and Hall-A Collaborations,

^{75}The CLAS and Hall-A Collaborations,

^{76}The CLAS and Hall-A Collaborations,

^{77}The CLAS and Hall-A Collaborations,

^{78}The CLAS and Hall-A Collaborations,

^{79}The CLAS and Hall-A Collaborations,

^{80}The CLAS and Hall-A Collaborations,

^{81}The CLAS and Hall-A Collaborations,

^{82}The CLAS and Hall-A Collaborations,

^{83}The CLAS and Hall-A Collaborations,

^{84}The CLAS and Hall-A Collaborations,

^{85}The CLAS and Hall-A Collaborations,

^{86}The CLAS and Hall-A Collaborations,

^{87}The CLAS and Hall-A Collaborations,

^{88}The CLAS and Hall-A Collaborations,

^{89}The CLAS and Hall-A Collaborations,

^{90}The CLAS and Hall-A Collaborations,

^{91}The CLAS and Hall-A Collaborations,

^{92}The CLAS and Hall-A Collaborations,

^{93}The CLAS and Hall-A Collaborations,

^{94}The CLAS and Hall-A Collaborations,

^{95}The CLAS and Hall-A Collaborations,

^{96}The CLAS and Hall-A Collaborations,

^{97}The CLAS and Hall-A Collaborations,

^{98}The CLAS and Hall-A Collaborations,

^{99}The CLAS and Hall-A Collaborations,

^{100}The CLAS and Hall-A Collaborations,

^{101}The CLAS and Hall-A Collaborations,

^{102}The CLAS and Hall-A Collaborations,

^{103}The CLAS and Hall-A Collaborations,

^{104}The CLAS and Hall-A Collaborations,

^{105}The CLAS and Hall-A Collaborations,

^{106}The CLAS and Hall-A Collaborations,

^{107}The CLAS and Hall-A Collaborations,

^{108}The CLAS and Hall-A Collaborations,

^{109}The CLAS and Hall-A Collaborations,

^{110}The CLAS and Hall-A Collaborations,

^{111}The CLAS and Hall-A Collaborations,

^{112}The CLAS and Hall-A Collaborations,

^{113}The CLAS and Hall-A Collaborations,

^{114}The CLAS and Hall-A Collaborations,

^{115}The CLAS and Hall-A Collaborations,

^{116}The CLAS and Hall-A Collaborations,

^{117}The CLAS and Hall-A Collaborations,

^{118}The CLAS and Hall-A Collaborations,

^{119}The CLAS and Hall-A Collaborations,

^{120}The CLAS and Hall-A Collaborations,

^{121}The CLAS and Hall-A Collaborations,

^{122}The CLAS and Hall-A Collaborations,

^{123}The CLAS and Hall-A Collaborations,

^{124}The CLAS and Hall-A Collaborations,

^{125}The CLAS and Hall-A Collaborations,

^{126}The CLAS and Hall-A Collaborations,

^{127}The CLAS and Hall-A Collaborations,

^{128}The CLAS and Hall-A Collaborations,

^{129}The CLAS and Hall-A Collaborations,

^{130}The CLAS and Hall-A Collaborations,

^{131}The CLAS and Hall-A Collaborations,

^{132}The CLAS and Hall-A Collaborations,

^{133}The CLAS and Hall-A Collaborations,

^{134}The CLAS and Hall-A Collaborations,

^{135}The CLAS and Hall-A Collaborations,

^{136}The CLAS and Hall-A Collaborations,

^{137}The CLAS and Hall-A Collaborations,

^{138}The CLAS and Hall-A Collaborations,

^{139}The CLAS and Hall-A Collaborations,

^{140}The CLAS and Hall-A Collaborations,

^{141}The CLAS and Hall-A Collaborations,

^{142}The CLAS and Hall-A Collaborations,

^{143}The CLAS and Hall-A Collaborations,

^{144}The CLAS and Hall-A Collaborations,

^{145}The CLAS and Hall-A Collaborations,

^{146}The CLAS and Hall-A Collaborations,

^{147}The CLAS and Hall-A Collaborations,

^{148}The CLAS and Hall-A Collaborations,

^{149}The CLAS and Hall-A Collaborations,

^{150}The CLAS and Hall-A Collaborations,

^{151}The CLAS and Hall-A Collaborations,

^{152}The CLAS and Hall-A Collaborations,

^{153}The CLAS and Hall-A Collaborations,

^{154}The CLAS and Hall-A Collaborations,

^{155}The CLAS and Hall-A Collaborations,

^{156}The CLAS and Hall-A Collaborations,

^{157}The CLAS and Hall-A Collaborations,

^{158}The CLAS and Hall-A Collaborations,

^{159}The CLAS and Hall-A Collaborations,

^{160}The CLAS and Hall-A Collaborations,

^{161}The CLAS and Hall-A Collaborations,

^{162}The CLAS and Hall-A Collaborations,

^{163}The CLAS and Hall-A Collaborations,

^{164}The CLAS and Hall-A Collaborations,

^{165}The CLAS and Hall-A Collaborations,

^{166}The CLAS and Hall-A Collaborations,

^{167}The CLAS and Hall-A Collaborations,

^{168}The CLAS and Hall-A Collaborations,

^{169}The CLAS and Hall-A Collaborations,

^{170}The CLAS and Hall-A Collaborations,

^{171}The CLAS and Hall-A Collaborations,

^{172}The CLAS and Hall-A Collaborations,

^{173}The CLAS and Hall-A Collaborations,

^{174}The CLAS and Hall-A Collaborations,

^{175}The CLAS and Hall-A Collaborations,

^{176}The CLAS and Hall-A Collaborations,

^{177}The CLAS and Hall-A Collaborations,

^{178}The CLAS and Hall-A Collaborations,

^{179}The CLAS and Hall-A Collaborations,

^{180}The CLAS and Hall-A Collaborations,

^{181}The CLAS and Hall-A Collaborations,

^{182}The CLAS and Hall-A Collaborations,

^{183}The CLAS and Hall-A Collaborations,

^{184}The CLAS and Hall-A Collaborations,

^{185}The CLAS and Hall-A Collaborations,

^{186}The CLAS and Hall-A Collaborations,

^{187}The CLAS and Hall-A Collaborations,

^{188}The CLAS and Hall-A Collaborations,

^{189}The CLAS and Hall-A Collaborations,

^{190}The CLAS and Hall-A Collaborations,

^{191}The CLAS and Hall-A Collaborations,

^{192}The CLAS and Hall-A Collaborations,

^{193}The CLAS and Hall-A Collaborations,

^{194}The CLAS and Hall-A Collaborations,

^{195}The CLAS and Hall-A Collaborations,

^{196}The CLAS and Hall-A Collaborations,

^{197}The CLAS and Hall-A Collaborations,

^{198}The CLAS and Hall-A Collaborations,

^{199}The CLAS and Hall-A Collaborations,

^{200}The CLAS and Hall-A Collaborations

**Category:**Nuclear Experiment

We have measured cross sections for the gamma+3He->p+d reaction at photon energies of 0.4 - 1.4 GeV and a center-of-mass angle of 90 deg. Read More

**Authors:**R. Gilman, E. J. Downie, G. Ron, A. Afanasev, J. Arrington, O. Ates, F. Benmokhtar, J. Bernauer, E. Brash, W. J. Briscoe, K. Deiters, J. Diefenbach, C. Djalali, B. Dongwi, L. El Fassi, S. Gilad, K. Gnanvo, R. Gothe, D. Higinbotham, R. Holt, Y. Ilieva, H. Jiang, M. Kohl, G. Kumbartzki, J. Lichtenstadt, A. Liyanage, N. Liyanage, M. Meziane, Z. -E. Meziani, D. G. Middleton, P. Monaghan, K. E. Myers, C. Perdrisat, E. Piasetzsky, V. Punjabi, R. Ransome, D. Reggiani, P. Reimer, A. Richter, A. Sarty, E. Schulte, Y. Shamai, N. Sparveris, S. Strauch, V. Sulkosky, A. S. Tadepalli, M. Taragin, L. Weinstein

**Category:**Nuclear Experiment

The Proton Radius Puzzle is the inconsistency between the proton radius determined from muonic hydrogen and the proton radius determined from atomic hydrogen level transitions and ep elastic scattering. No generally accepted resolution to the Puzzle has been found. Possible solutions generally fall into one of three categories: the two radii are different due to novel beyond-standard-model physics, the two radii are different due to novel aspects of nucleon structure, and the two radii are the same, but there are underestimated uncertainties or other issues in the ep experiments. Read More

We discuss a polyhedral embedding of the classical Fricke-Klein regular map of genus 5 in ordinary 3-space. This polyhedron was originally discovered by Grunbaum in 1999, but was recently rediscovered by Brehm and Wills. We establish isomorphism of the Grunbaum polyhedron with the Fricke-Klein map, and confirm its combinatorial regularity. Read More

The main purpose of this paper is to popularize Danzer's power complex construction and establish some new results about covering maps between two power complexes. Power complexes are cube-like combinatorial structures that share many structural properties with higher-dimensional cubes and cubical tessellations on manifolds. Power complexes that are also abstract polytopes have repeatedly appeared somewhat unexpectedly in various contexts, although often under a different name. Read More

Regular polygonal complexes in euclidean 3-space are discrete polyhedra-like structures with finite or infinite polygons as faces and with finite graphs as vertex-figures, such that their symmetry groups are transitive on the flags. The present paper and its predecessor describe a complete classification of regular polygonal complexes in 3-space. In Part I we established basic structural results for the symmetry groups, discussed operations on their generators, characterized the complexes with face mirrors as the 2-skeletons of the regular 4-apeirotopes in 3-space, and fully enumerated the simply flag-transitive complexes with mirror vector (1,2). Read More

Every regular map on a closed surface gives rise to generally six regular maps, its "Petrie relatives", that are obtained through iteration of the duality and Petrie operations (taking duals and Petrie-duals). It is shown that the skeletal polyhedra in Euclidean 3-space which realize a Petrie relative of the classical Gordan regular map and have full icosahedral symmetry, comprise precisely four infinite families of polyhedra, as well as four individual polyhedra. Read More

**Authors:**G. N. Perdue, L. Bagby, B. Baldin, C. Gingu, J. Olsen, P. Rubinov, E. C. Schulte, R. Bradford, W. K. Brooks, D. A. M. Caicedo, C. M. Castromonte, J. Chvojka, H. da Motta, I. Danko, J. Devan, B. Eberly, J. Felix, L. Fields, G. A. Fiorentini, A. M. Gago, R. Gran, D. A. Harris, K. Hurtado, H. Lee, E. Maher, S. Manly, C. M. Marshall, K. S. McFarland, A. Mislivec, J. Mousseau, B. Osmanov, J. Osta, V. Paolone, R. D. Ransome, H. Ray, D. W. Schmitz, C. Simon, C. J. Solano Salinas, B. G. Tice, T. Walton, J. Wolcott, D. Zhang, B. P. Ziemer

MINER$\nu$A (Main INjector ExpeRiment $\nu$-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINER$\nu$A employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINER$\nu$A data acquisition system (DAQ) including the read-out electronics, software, and computing architecture. Read More

We prove that any finite, abstract n-polytope is covered by a finite, abstract regular n-polytope. Read More

Given a connected graph G with p vertices and q edges, the G-graphicahedron is a vertex-transitive simple abstract polytope of rank q whose edge-graph is isomorphic to a Cayley graph of the symmetric group S_p associated with G. The paper explores combinatorial symmetry properties of G-graphicahedra, focussing in particular on transitivity properties of their automorphism groups. We present a detailed analysis of the graphicahedra for the q-star graphs K_{1,q} and the q-cycles C_q. Read More

Every regular polytope has the remarkable property that it inherits all symmetries of each of its facets. This property distinguishes a natural class of polytopes which are called hereditary. Regular polytopes are by definition hereditary, but the other polytopes in this class are interesting, have possible applications in modeling of structures, and have not been previously investigated. Read More

Neutral landscapes and mutational robustness are believed to be important enablers of evolvability in biology. We apply these concepts to software, defining mutational robustness to be the fraction of random mutations that leave a program's behavior unchanged. Test cases are used to measure program behavior and mutation operators are taken from genetic programming. Read More

The paper investigates connections between abstract polytopes and properly edge colored graphs. Given any finite n-edge-colored n-regular graph G, we associate to G a simple abstract polytope P_G of rank n, called the colorful polytope of G, with 1-skeleton isomorphic to G. We investigate the interplay between the geometric, combinatorial, or algebraic properties of the polytope P_G and the combinatorial or algebraic structure of the underlying graph G, focussing in particular on aspects of symmetry. Read More

**Authors:**D. D. Stancil, P. Adamson, M. Alania, L. Aliaga, M. Andrews, C. Araujo Del Castillo, L. Bagby, J. L. Bazo Alba, A. Bodek, D. Boehnlein, R. Bradford, W. K. Brooks, H. Budd, A. Butkevich, D. A. M. Caicedo, D. P. Capista, C. M. Castromonte, A. Chamorro, E. Charlton, M. E. Christy, J. Chvojka, P. D. Conrow, I. Danko, M. Day, J. Devan, J. M. Downey, S. A. Dytman, B. Eberly, J. R. Fein, J. Felix, L. Fields, G. A. Fiorentini, A. M. Gago, H. Gallagher, R. Gran, J. Grange, J. Griffin, T. Griffin, E. Hahn, D. A. Harris, A. Higuera, J. A. Hobbs, C. M. Hoffman, B. L. Hughes, K. Hurtado, A. Judd, T. Kafka, K. Kephart, J. Kilmer, M. Kordosky, S. A. Kulagin, V. A. Kuznetsov, M. Lanari, T. Le, H. Lee, L. Loiacono, G. Maggi, E. Maher, S. Manly, W. A. Mann, C. M. Marshall, K. S. McFarland, A. Mislivec, A. M. McGowan, J. G. Morfin, H. da Motta, J. Mousseau, J. K. Nelson, J. A. Niemiec-Gielata, N. Ochoa, B. Osmanov, J. Osta, J. L. Palomino, J. S. Paradis, V. Paolone, J. Park, C. Pena, G. Perdue, C. E. Perez Lara, A. M. Peterman, A. Pla-Dalmau, B. Pollock, F. Prokoshin, R. D. Ransome, H. Ray, M. Reyhan, P. Rubinov, D. Ruggiero, O. S. Sands, H. Schellman, D. W. Schmitz, E. C. Schulte, C. Simon, C. J. Solano Salinas, R. Stefanski, R. G. Stevens, N. Tagg, V. Takhistov, B. G. Tice, R. N. Tilden, J. P. Velasquez, I. Vergalosova, J. Voirin, J. Walding, B. J. Walker, T. Walton, J. Wolcott, T. P. Wytock, G. Zavala, D. Zhang, L. Y. Zhu, B. P. Ziemer

**Category:**High Energy Physics - Experiment

Beams of neutrinos have been proposed as a vehicle for communications under unusual circumstances, such as direct point-to-point global communication, communication with submarines, secure communications and interstellar communication. We report on the performance of a low-rate communications link established using the NuMI beam line and the MINERvA detector at Fermilab. The link achieved a decoded data rate of 0. Read More

Unlike the situation in the classical theory of convex polytopes, there is a wealth of semi-regular abstract polytopes, including interesting examples exhibiting some unexpected phenomena. We prove that even an equifacetted semi-regular abstract polytope can have an arbitrary large number of flag orbits or face orbits under its combinatorial automorphism group. Read More

In the classical setting, a convex polytope is said to be semiregular if its facets are regular and its symmetry group is transitive on vertices. This paper studies semiregular abstract polytopes, which have abstract regular facets, still with combinatorial automorphism group transitive on vertices. We analyze the structure of the automorphism group, focusing in particular on polytopes with two kinds of regular facets occurring in an "alternating" fashion. Read More

**Authors:**J. Huang, K. Allada, C. Dutta, J. Katich, X. Qian, Y. Wang, Y. Zhang, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, M. Huang, H. F. Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. MuÃ±oz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, Y. Qiang, A. Rakhman, R. D. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Å irca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. -W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong, for the Jefferson Lab Hall A Collaboration

We report the first measurement of the double-spin asymmetry $A_{LT}$ for
charged pion electroproduction in semi\nobreakdash-inclusive
deep\nobreakdash-inelastic electron scattering on a transversely polarized
$^{3}$He target. The kinematics focused on the valence quark region,
$0.16

**Authors:**N. Fomin, J. Arrington, R. Asaturyan, F. Benmokhtar, W. Boeglin, P. Bosted, A. Bruell, M. H. S. Bukhari, E. Chudakov, B. Clasie, S. H. Connell, M. M. Dalton, A. Daniel, D. B. Day, D. Dutta, R. Ent, L. El Fassi, H. Fenker, B. W. Filippone, K. Garrow, D. Gaskell, C. Hill, R. J. Holt, T. Horn, M. K. Jones, J. Jourdan, N. Kalantarians, C. E. Keppel, D. Kiselev, M. Kotulla, R. Lindgren, A. F. Lung, S. Malace, P. Markowitz, P. McKee, D. G. Meekins, H. Mkrtchyan, T. Navasardyan, G. Niculescu, A. K. Opper, C. Perdrisat, D. H. Potterveld, V. Punjabi, X. Qian, P. E. Reimer, J. Roche, V. M. Rodriguez, O. Rondon, E. Schulte, J. Seely, E. Segbefia, K. Slifer, G. R. Smith, P. Solvignon, V. Tadevosyan, S. Tajima, L. Tang, G. Testa, R. Trojer, V. Tvaskis, W. F. Vulcan, C. Wasko, F. R. Wesselmann, S. A. Wood, J. Wright, X. Zheng

**Category:**Nuclear Experiment

We present new measurements of electron scattering from high-momentum nucleons in nuclei. These data allow an improved determination of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data also include the kinematic region where three-nucleon correlations are expected to dominate. Read More

**Authors:**X. Qian, K. Allada, C. Dutta, J. Huang, J. Katich, Y. Wang, Y. Zhang, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, M. Huang, H. F. Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. Munoz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, Y. Qiang, A. Rakhman, R. D. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Å irca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. -W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

We report the first measurement of target single spin asymmetries in the semi-inclusive $^3{He}(e,e'\pi^\pm)X$ reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0. Read More

**Authors:**G. Ron, X. Zhan, J. Glister, B. Lee, K. Allada, W. Armstrong, J. Arrington, A. Beck, F. Benmokhtar, B. L. Berman, W. Boeglin, E. Brash, A. Camsonne, J. Calarco, J. P. Chen, S. Choi, E. Chudakov, L. Coman, B. Craver, F. Cusanno, J. Dumas, C. Dutta, R. Feuerbach, A. Freyberger, S. Frullani, F. Garibaldi, R. Gilman, O. Hansen, D. W. Higinbotham, T. Holmstrom, C. E. Hyde, H. Ibrahim, Y. Ilieva, C. W. de Jager, X. Jiang, M. Jones, A. Kelleher, E. Khrosinkova, E. Kuchina, G. Kumbartzki, J. J. LeRose, R. Lindgren, P. Markowitz, S. May-Tal Beck, E. McCullough, M. Meziane, Z. -E. Meziani, R. Michaels, B. Moffit, B. E. Norum, Y. Oh, M. Olson, M. Paolone, K. Paschke, C. F. Perdrisat, E. Piasetzky, M. Potokar, R. Pomatsalyuk, I. Pomerantz, A. Puckett, V. Punjabi, X. Qian, Y. Qiang, R. Ransome, M. Reyhan, J. Roche, Y. Rousseau, A. Saha, A. J. Sarty, B. Sawatzky, E. Schulte, M. Shabestari, A. Shahinyan, R. Shneor, S. Sirca, K. Slifer, P. Solvignon, J. Song, R. Sparks, R. Subedi, S. Strauch, G. M. Urciuoli, K. Wang, B. Wojtsekhowski, X. Yan, H. Yao, X. Zhu

We present an updated extraction of the proton electromagnetic form factor ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the proton. An improved selection of the elastic events and reduced background contributions yielded a small systematic reduction in the ratio mu_p G_E/G_M compared to the original analysis. Read More

**Authors:**R. Asaturyan, R. Ent, H. Mkrtchyan, T. Navasardyan, V. Tadevosyan, G. S. Adams, A. Ahmidouch, T. Angelescu, J. Arrington, A. Asaturyan, O. K. Baker, N. Benmouna, C. Bertoncini, H. P. Blok, W. U. Boeglin, P. E. Bosted, H. Breuer, M. E. Christy, S. H. Connell, Y. Cui, M. M. Dalton, S. Danagoulian, D. Day, J. A. Dunne, D. Dutta, N. El Khayari, H. C. Fenker, V. V. Frolov, L. Gan, D. Gaskell, K. Hafidi, W. Hinton, R. J. Holt, T. Horn, G. M. Huber, E. Hungerford, X. Jiang, M. Jones, K. Joo, N. Kalantarians, J. J. Kelly, C. E. Keppel, V. Kubarovsky, Y. Li, Y. Liang, D. Mack, S. P. Malace, P. Markowitz, E. McGrath, P. McKee, D. G. Meekins, A. Mkrtchyan, B. Moziak, G. Niculescu, I. Niculescu, A. K. Opper, T. Ostapenko, P. E. Reimer, J. Reinhold, J. Roche, S. E. Rock, E. Schulte, E. Segbefia, C. Smith, G. R. Smith, P. Stoler, L. Tang, M. Ungaro, A. Uzzle, S. Vidakovic, A. Villano, W. F. Vulcan, M. Wang, G. Warren, F. R. Wesselmann, B. Wojtsekhowski, S. A. Wood, C. Xu, L. Yuan, X. Zheng

**Category:**Nuclear Experiment

A large set of cross sections for semi-inclusive electroproduction of charged pions ($\pi^\pm$) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared $W^2$ > 4 GeV$^2$ and range in four-momentum transfer squared $2 < Q^2 < 4$ (GeV/c)$^2$, and cover a range in the Bjorken scaling variable 0.2 < x < 0. Read More

**Authors:**X. Zhan, K. Allada, D. S. Armstrong, J. Arrington, W. Bertozzi, W. Boeglin, J. -P. Chen, K. Chirapatpimol, S. Choi, E. Chudakov, E. Cisbani, P. Decowski, C. Dutta, S. Frullani, E. Fuchey, F. Garibaldi, S. Gilad, R. Gilman, J. Glister, K. Hafidi, B. Hahn, J. -O. Hansen, D. W. Higinbotham, T. Holmstrom, R. J. Holt, J. Huang, G. M. Huber, F. Itard, C. W. de Jager, X. Jiang, J. Johnson, J. Katich, R. de Leo, J. J. LeRose, R. Lindgren, E. Long, D. J. Margaziotis, S. May-Tal Beck, D. Meekins, R. Michaels, B. Moffit, B. E. Norum, M. Olson, E. Piasetzky, I. Pomerantz, D. Protopopescu, X. Qian, Y. Qiang, A. Rakhman, R. D. Ransome, P. E. Reimer, J. Reinhold, S. Riordan, G. Ron, A. Saha, A. J. Sarty, B. Sawatzky, E. C. Schulte, M. Shabestari, A. Shahinyan, S. Sirca, P. Solvignon, N. F. Sparveris, S. Strauch, R. Subedi, V. Sulkosky, I. Vilardi, Y. Wang, B. Wojtsekhowski, Z. Ye, Y. Zhang

**Category:**Nuclear Experiment

We report a new, high-precision measurement of the proton elastic form factor ratio \mu_p G_E/G_M for the four-momentum transfer squared Q^2 = 0.3-0.7 (GeV/c)^2. Read More

**Authors:**N. Fomin, J. Arrington, D. B. Day, D. Gaskell, A. Daniel, J. Seely, R. Asaturyan, F. Benmokhtar, W. Boeglin, B. Boillat, P. Bosted, A. Bruell, M. H. S. Bukhari, M. E. Christy, E. Chudakov, B. Clasie, S. H. Connell, M. M. Dalton, D. Dutta, R. Ent, L. El Fassi, H. Fenker, B. W. Filippone, K. Garrow, C. Hill, R. J. Holt, T. Horn, M. K. Jones, J. Jourdan, N. Kalantarians, C. E. Keppel, D. Kiselev, M. Kotulla, R. Lindgren, A. F. Lung, S. Malace, P. Markowitz, P. McKee, D. G. Meekins, T. Miyoshi, H. Mkrtchyan, T. Navasardyan, G. Niculescu, Y. Okayasu, A. K. Opper, C. Perdrisat, D. H. Potterveld, V. Punjabi, X. Qian, P. E. Reimer, J. Roche, V. M. Rodriguez, O. Rondon, E. Schulte, E. Segbefia, K. Slifer, G. R. Smith, P. Solvignon, V. Tadevosyan, S. Tajima, L. Tang, G. Testa, R. Trojer, V. Tvaskis, W. F. Vulcan, C. Wasko, F. R. Wesselmann, S. A. Wood, J. Wright, X. Zheng

**Category:**Nuclear Experiment

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. Read More

An abstract polytope of rank n is said to be chiral if its automorphism group has precisely two orbits on the flags, such that adjacent flags belong to distinct orbits. The present paper describes a general method for deriving new finite chiral polytopes from old finite chiral polytopes of the same rank. In particular, the technique is used to construct many new examples in ranks 3, 4 and 5. Read More

A polyhedron in Euclidean 3-space is called a regular polyhedron of index 2 if it is combinatorially regular but "fails geometric regularity by a factor of 2"; its combinatorial automorphism group is flag-transitive but its geometric symmetry group has two flag orbits. The present paper, and its successor by the first author, describe a complete classification of regular polyhedra of index 2 in 3-space. In particular, the present paper enumerates the regular polyhedra of index 2 with vertices on two orbits under the symmetry group. Read More

The present article studies combinatorial tilings of Euclidean or spherical spaces by polytopes, serving two main purposes: first, to survey some of the main developments in combinatorial space tiling; and second, to highlight some new and some old open problems in this area. Read More

**Authors:**J. Glister, G. Ron, B. W. Lee, R. Gilman, A. J. Sarty, S. Strauch, D. W. Higinbotham, E. Piasetzky, K. Allada, W. Armstrong, J. Arrington, A. Beck, F. Benmokhtar, B. L. Berman, W. Boeglin, E. Brash, A. Camsonne, J. Calarco, J. P. Chen, Seonho Choi, E. Chudakov, L. Coman, B. Craver, F. Cusanno, J. Dumas, C. Dutta, R. Feuerbach, A. Freyberger, S. Frullani, F. Garibaldi, J. -0. Hansen, T. Holmstrom, C. E. Hyde, H. Ibrahim, Y. Ilieva, C. W. de Jager, X. Jiang, M. K. Jones, H. Kang, A. Kelleher, E. Khrosinkova, E. Kuchina, G. Kumbartzki, J. J. LeRose, R. Lindgren, P. Markowitz, S. May-Tal Beck, E. McCullough, D. Meekins, M. Meziane, Z. -E. Meziani, R. Michaels, B. Moffit, B. E. Norum, Y. Oh, M. Olson, M. Paolone, K. Paschke, C. F. Perdrisat, M. Potokar, R. Pomatsalyuk, I. Pomerantz, A. Puckett, V. Punjabi, X. Qian, Y. Qiang, R. Ransome, M. Reyhan, J. Roche, Y. Rousseau, A. Saha, B. Sawatzky, E. Schulte, M. Shabestari, A. Shahinyan, R. Shneor, S. Sirca, K. Slifer, P. Solvignon, J. Song, R. Sparks, R. Subedi, G. M. Urciuoli, K. Wang, B. Wojtsekhowski, X. Yan, H. Yao, X. Zhan, X. Zhu

**Category:**Nuclear Experiment

High precision measurements of induced and transferred recoil proton polarization in d(polarized gamma, polarized p})n have been performed for photon energies of 277--357 MeV and theta_cm = 20 degrees -- 120 degrees. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used. Read More

**Authors:**M. Paolone, S. P. Malace, S. Strauch, I. Albayrak, J. Arrington, B. L. Berman, E. J. Brash, B. Briscoe, A. Camsonne, J. -P. Chen, M. E. Christy, E. Chudakov, E. Cisbani, B. Craver, F. Cusanno, R. Ent, F. Garibaldi, R. Gilman, O. Glamazdin, J. Glister, D. W. Higinbotham, C. E. Hyde-Wright, Y. Ilieva, C. W. de Jager, X. Jiang, M. K. Jones, C. E. Keppel, E. Khrosinkova, E. Kuchina, G. Kumbartzki, B. Lee, R. Lindgren, D. J. Margaziotis, D. Meekins, R. Michaels, K. Park, L. Pentchev, C. F. Perdrisat, E. Piasetzky, V. A. Punjabi, A. J. R. Puckett, X. Qian, Y. Qiang, R. D. Ransome, A. Saha, A. J. Sarty, E. Schulte, P. Solvignon, R. R. Subudi, L. Tang, D. Tedeschi, V. Tvaskis, J. M. Udias, P. E. Ulmer, J. R. Vignote, F. R. Wesselmann, B. Wojteskhowski, X. Zhan

**Category:**Nuclear Experiment

Proton recoil polarization was measured in the quasielastic 4He(e,e'p)3H reaction at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision. Read More

The paper describes a construction of abstract polytopes from Cayley graphs of symmetric groups. Given any connected graph G with p vertices and q edges, we associate with G a Cayley graph of the symmetric group S_p and then construct a vertex-transitive simple polytope of rank q, called the graphicahedron, whose 1-skeleton (edge graph) is the Cayley graph. The graphicahedron of a graph G is a generalization of the well-known permutahedron; the latter is obtained when the graph is a path. Read More