E. Klein

E. Klein
Are you E. Klein?

Claim your profile, edit publications, add additional information:

Contact Details

Name
E. Klein
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (9)
 
Physics - Instrumentation and Detectors (6)
 
Physics - Disordered Systems and Neural Networks (5)
 
Computer Science - Artificial Intelligence (4)
 
Physics - Optics (3)
 
Physics - Statistical Mechanics (3)
 
Nuclear Experiment (2)
 
Computer Science - Computation and Language (2)
 
Physics - Materials Science (1)
 
Physics - Other (1)
 
Computer Science - Cryptography and Security (1)
 
Nonlinear Sciences - Chaotic Dynamics (1)
 
Quantitative Biology - Populations and Evolution (1)
 
Quantum Physics (1)
 
Computer Science - Computers and Society (1)

Publications Authored By E. Klein

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

Two-dimensional colloidal nanosheets represent very attractive optoelectronic materials. They combine good lateral conductivity with solution-processability and geometry-tunable electronic properties. In case of PbS nanosheets, so far the synthesis was driven by the addition of chloroalkanes as coligands. Read More

This paper presents the first framework for integrating procedural knowledge, or "know-how", into the Linked Data Cloud. Know-how available on the Web, such as step-by-step instructions, is largely unstructured and isolated from other sources of online knowledge. To overcome these limitations, we propose extending to procedural knowledge the benefits that Linked Data has already brought to representing, retrieving and reusing declarative knowledge. Read More

The increasing amount of available Linked Data resources is laying the foundations for more advanced Semantic Web applications. One of their main limitations, however, remains the general low level of data quality. In this paper we focus on a measure of quality which is negatively affected by the increase of the available resources. Read More

The ArgoNeuT collaboration reports the first measurement of neutral current $\pi^{0}$ production in $\nu_{\mu}$-argon and $\bar{\nu}_{\mu}$-argon scattering. This measurement was performed using the ArgoNeuT liquid argon time projection chamber deployed at Fermilab's NuMI neutrino beam with an exposure corresponding to 1.2$\times 10^{20}$ protons-on-target from the Fermilab Main Injector and a mean energy for $\nu_{\mu}$ of 9. Read More

We witnessed the low quality of IT solutions in Paris hospitals. The price paid to private companies for these solutions and the cost incurred from their inefficiency constitute a gross and appalling waste of public resources. We propose to bootstrap a change in IT policy by having heads of department hire IT workers ; we give advice to the central decision making body on how to incentivize them. Read More

Having a precise knowledge of the dispersal ability of a population in a heterogeneous environment is of critical importance in agroecology and conservation biology as it can provide management tools to limit the effects of pests or to increase the survival of endangered species. In this paper, we propose a mechanistic-statistical method to estimate space-dependent diffusion parameters of spatially-explicit models based on stochastic differential equations, using genetic data. Dividing the total population into subpopulations corresponding to different habitat patches with known allele frequencies, the expected proportions of individuals from each subpopulation at each position is computed by solving a system of reaction-diffusion equations. Read More

This paper proposes a novel framework for representing community know-how on the Semantic Web. Procedural knowledge generated by web communities typically takes the form of natural language instructions or videos and is largely unstructured. The absence of semantic structure impedes the deployment of many useful applications, in particular the ability to discover and integrate know-how automatically. Read More

Ontologies can be a powerful tool for structuring knowledge, and they are currently the subject of extensive research. Updating the contents of an ontology or improving its interoperability with other ontologies is an important but difficult process. In this paper, we focus on the presence of vague concepts, which are pervasive in natural language, within the framework of formal ontologies. Read More

We report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be $2. Read More

Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. Read More

The ArgoNeuT collaboration presents measurements of inclusive muon neutrino and antineutrino charged current differential cross sections on argon in the Fermilab NuMI beam operating in the low energy antineutrino mode. The results are reported in terms of outgoing muon angle and momentum at a mean neutrino energy of 9.6 GeV (neutrinos) and 3. Read More

Electron recombination in highly ionizing stopping protons and deuterons is studied in the ArgoNeuT detector. The data are well modeled by either a Birks model or a modified form of the Box model. The dependence of recombination on the track angle with respect to the electric field direction is much weaker than the predictions of the Jaffe columnar theory and by theoretical-computational simulations. Read More

A novel and simple approach to optical wavelength measurement is presented in this paper. The working principle is demonstrated using a tunable waveguide micro ring resonator and single photodiode. The initial calibration is done with a set of known wavelengths and resonator tunings. Read More

ArgoNeuT, or Argon Neutrino Test, is a 170 liter liquid argon time projection chamber designed to collect neutrino interactions from the NuMI beam at Fermi National Accelerator Laboratory. ArgoNeuT operated in the NuMI low-energy beam line directly upstream of the MINOS Near Detector from September 2009 to February 2010, during which thousands of neutrino and antineutrino events were collected. The MINOS Near Detector was used to measure muons downstream of ArgoNeuT. Read More

The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and antineutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related technical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. Read More

We report on the spectral properties of a diode laser with a tunable external cavity in integrated optics. Even though the external cavity is short compared to other small-bandwidth external cavity lasers, the spectral bandwidth of this tunable laser is as small as 25 kHz (FWHM), at a side-mode suppression ratio (SMSR) of 50 dB. Our laser is also able to access preset wavelengths in as little as 200 us and able to tune over the full telecom C-band (1530 nm - 1565 nm). Read More

The propagation of short lightpulses in waveguiding structures with optical feedback, in our case optical microresonators, has been studied theoretically and experimentally. It appears that, dependent on the measurement set-up, ballistic transport or interference in the time domain of fs and ps laser pulses can be observed. The experiments are analyzed in terms of characteristic time scales of the source, the waveguide device and the detector arrangement and are related to Heisenberg's uncertainty principle. Read More

The ArgoNeuT collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beamline at Fermilab, the results are reported in terms of outgoing muon angle and momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, $0^\circ$$<\theta_\mu$$<36^\circ$ and 0$Read More

Two mutually coupled chaotic diode lasers exhibit stable isochronal synchronization in the presence of self feedback. When the mutual communication between the lasers is discontinued by a shutter and the two uncoupled lasers are subject to self-feedback only, the desynchronization time is found to scale as $A_d\tau$ where $A_d>1$ and $\tau$ corresponds to the optical distance between the lasers. Prior to synchronization, when the two lasers are uncorrelated and the shutter between them is opened, the synchronization time is found to be much shorter, though still proportional to $\tau$. Read More

We study the mutual coupling of chaotic lasers and observe both experimentally and in numeric simulations, that there exists a regime of parameters for which two mutually coupled chaotic lasers establish isochronal synchronization, while a third laser coupled unidirectionally to one of the pair, does not synchronize. We then propose a cryptographic scheme, based on the advantage of mutual-coupling over unidirectional coupling, where all the parameters of the system are public knowledge. We numerically demonstrate that in such a scheme the two communicating lasers can add a message signal (compressed binary message) to the transmitted coupling signal, and recover the message in both directions with high fidelity by using a mutual chaos pass filter procedure. Read More

The dynamics of two mutually coupled chaotic diode lasers are investigated experimentally and numerically. By adding self feedback to each laser, stable isochronal synchronization is established. This stability, which can be achieved for symmetric operation, is essential for constructing an optical public-channel cryptographic system. Read More

Two mutually coupled chaotic diode lasers with individual external feedback, are shown to establish chaos synchronization in the low-frequency fluctuations regime. A third laser with identical external feedback but coupled unidirectionally to one of the pair does not synchronize. Both experiments and simulations reveal the existence of a window of parameters for which synchronization by mutual coupling is possible but synchronization by unidirectional coupling is not. Read More

We present a key-exchange protocol that comprises two parties with chaotic dynamics that are mutually coupled and undergo a synchronization process, at the end of which they can use their identical dynamical state as an encryption key. The transferred coupling-signals are based non-linearly on time-delayed states of the parties, and therefore they conceal the parties' current state and can be transferred over a public channel. Synchronization time is linear in the number of synchronized digits alpha, while the probability for an attacker to synchronize with the parties drops exponentially with alpha. Read More

A new and successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The advanced attacker presented here, named the ``Majority-Flipping Attacker'', is the first whose success does not decay with the parameters of the model. Read More

Two different kinds of synchronization have been applied to cryptography: Synchronization of chaotic maps by one common external signal and synchronization of neural networks by mutual learning. By combining these two mechanisms, where the external signal to the chaotic maps is synchronized by the nets, we construct a hybrid network which allows a secure generation of secret encryption keys over a public channel. The security with respect to attacks, recently proposed by Shamir et al, is increased by chaotic synchronization. Read More

Mutual learning of a pair of tree parity machines with continuous and discrete weight vectors is studied analytically. The analysis is based on a mapping procedure that maps the mutual learning in tree parity machines onto mutual learning in noisy perceptrons. The stationary solution of the mutual learning in the case of continuous tree parity machines depends on the learning rate where a phase transition from partial to full synchronization is observed. Read More