E. Ihloff - Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA

E. Ihloff
Are you E. Ihloff?

Claim your profile, edit publications, add additional information:

Contact Details

Name
E. Ihloff
Affiliation
Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA
City
Middleton
Country
United States

Pubs By Year

Pub Categories

 
Nuclear Experiment (8)
 
Physics - Instrumentation and Detectors (7)
 
Physics - Accelerator Physics (6)
 
High Energy Physics - Experiment (3)
 
High Energy Physics - Phenomenology (2)
 
Nuclear Theory (1)

Publications Authored By E. Ihloff

We have performed a novel comparison between electron-beam polarimeters based on M{\o}ller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents ($<$ 5 $\mu$A) during the $Q_{\rm weak}$ experiment in Hall C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 $\mu$A) operation of the Compton polarimeter. Read More

We report on the highest precision yet achieved in the measurement of the polarization of a low energy, $\mathcal{O}$(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. Read More

We describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c$^2$ could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. Read More

2014Nov
Authors: MOLLER Collaboration, J. Benesch, P. Brindza, R. D. Carlini, J-P. Chen, E. Chudakov, S. Covrig, M. M. Dalton, A. Deur, D. Gaskell, A. Gavalya, J. Gomez, D. W. Higinbotham, C. Keppel, D. Meekins, R. Michaels, B. Moffit, Y. Roblin, R. Suleiman, R. Wines, B. Wojtsekhowski, G. Cates, D. Crabb, D. Day, K. Gnanvo, D. Keller, N. Liyanage, V. V. Nelyubin, H. Nguyen, B. Norum, K. Paschke, V. Sulkosky, J. Zhang, X. Zheng, J. Birchall, P. Blunden, M. T. W. Gericke, W. R. Falk, L. Lee, J. Mammei, S. A. Page, W. T. H. van Oers, K. Dehmelt, A. Deshpande, N. Feege, T. K. Hemmick, K. S. Kumar, T. Kutz, R. Miskimen, M. J. Ramsey-Musolf, S. Riordan, N. Hirlinger Saylor, J. Bessuille, E. Ihloff, J. Kelsey, S. Kowalski, R. Silwal, G. De Cataldo, R. De Leo, D. Di Bari, L. Lagamba, E. NappiV. Bellini, F. Mammoliti, F. Noto, M. L. Sperduto, C. M. Sutera, P. Cole, T. A. Forest, M. Khandekar, D. McNulty, K. Aulenbacher, S. Baunack, F. Maas, V. Tioukine, R. Gilman, K. Myers, R. Ransome, A. Tadepalli, R. Beniniwattha, R. Holmes, P. Souder, D. S. Armstrong, T. D. Averett, W. Deconinck, W. Duvall, A. Lee, M. L. Pitt, J. A. Dunne, D. Dutta, L. El Fassi, F. De Persio, F. Meddi, G. M. Urciuoli, E. Cisbani, C. Fanelli, F. Garibaldi, K. Johnston, N. Simicevic, S. Wells, P. M. King, J. Roche, J. Arrington, P. E. Reimer, G. Franklin, B. Quinn, A. Ahmidouch, S. Danagoulian, O. Glamazdin, R. Pomatsalyuk, R. Mammei, J. W. Martin, T. Holmstrom, J. Erler, Yu. G. Kolomensky, J. Napolitano, K. A. Aniol, W. D. Ramsay, E. Korkmaz, D. T. Spayde, F. Benmokhtar, A. Del Dotto, R. Perrino, S. Barkanova, A. Aleksejevs, J. Singh

The physics case and an experimental overview of the MOLLER (Measurement Of a Lepton Lepton Electroweak Reaction) experiment at the 12 GeV upgraded Jefferson Lab are presented. A highlight of the Fundamental Symmetries subfield of the 2007 NSAC Long Range Plan was the SLAC E158 measurement of the parity-violating asymmetry $A_{PV}$ in polarized electron-electron (M{\o}ller) scattering. The proposed MOLLER experiment will improve on this result by a factor of five, yielding the most precise measurement of the weak mixing angle at low or high energy anticipated over the next decade. Read More

A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. Read More

2014Sep
Authors: Qweak Collaboration, T. Allison, M. Anderson, D. Androic, D. S. Armstrong, A. Asaturyan, T. D. Averett, R. Averill, J. Balewski, J. Beaufait, R. S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Bessuille, J. Birchall, E. Bonnell, J. Bowman, P. Brindza, D. B. Brown, R. D. Carlini, G. D. Cates, B. Cavness, G. Clark, J. C. Cornejo, S. Covrig Dusa, M. M. Dalton, C. A. Davis, D. C. Dean, W. Deconinck, J. Diefenbach, K. Dow, J. F. Dowd, J. A. Dunne, D. Dutta, W. S. Duvall, J. R. Echols, M. Elaasar, W. R. Falk, K. D. Finelli, J. M. Finn, D. Gaskell, M. T. W. Gericke, J. Grames, V. M. Gray, K. Grimm, F. Guo, J. Hansknecht, D. J. Harrison, E. Henderson, J. R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, J. Kelsey, N. Khan, P. M. King, E. Korkmaz, S. Kowalski, A. Kubera, J. Leacock, J. P. Leckey, A. R. Lee, J. H. Lee, L. Lee, Y. Liang, S. MacEwan, D. Mack, J. A. Magee, R. Mahurin, J. Mammei, J. W. Martin, A. McCreary, M. H. McDonald, M. J. McHugh, P. Medeiros, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, J. Musson, K. E. Mesick, A. Narayan, L. Z. Ndukum, V. Nelyubin, Nuruzzaman, W. T. H. van Oers, A. K. Opper, S. A. Page, J. Pan, K. D. Paschke, S. K. Phillips, M. L. Pitt, M. Poelker, J. F. Rajotte, W. D. Ramsay, W. R. Roberts, J. Roche, P. W. Rose, B. Sawatzky, T. Seva, M. H. Shabestari, R. Silwal, N. Simicevic, G. R. Smith, S. Sobczynski, P. Solvignon, D. T. Spayde, B. Stokes, D. W. Storey, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W. A. Tobias, V. Tvaskis, E. Urban, B. Waidyawansa, P. Wang, S. P. Wells, S. A. Wood, S. Yang, S. Zhamkochyan, R. B. Zielinski

The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. Read More

An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. Read More

2013Jul
Affiliations: 1Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 2Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 3Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 4Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 5Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 6Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 7Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 8Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 9Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 10Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 11Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 12Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 13Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 14Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 15Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 16Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 17Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 18Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 19Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 20Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 21Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 22Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 23Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 24Jefferson Lab, Newport News, VA USA, 25Jefferson Lab, Newport News, VA USA, 26Jefferson Lab, Newport News, VA USA, 27Jefferson Lab, Newport News, VA USA, 28Jefferson Lab, Newport News, VA USA, 29Jefferson Lab, Newport News, VA USA, 30Jefferson Lab, Newport News, VA USA, 31Jefferson Lab, Newport News, VA USA, 32Jefferson Lab, Newport News, VA USA, 33Jefferson Lab, Newport News, VA USA, 34Jefferson Lab, Newport News, VA USA, 35Jefferson Lab, Newport News, VA USA, 36Jefferson Lab, Newport News, VA USA, 37Jefferson Lab, Newport News, VA USA, 38Jefferson Lab, Newport News, VA USA, 39Jefferson Lab, Newport News, VA USA, 40Jefferson Lab, Newport News, VA USA, 41Jefferson Lab, Newport News, VA USA, 42Jefferson Lab, Newport News, VA USA, 43Jefferson Lab, Newport News, VA USA, 44Jefferson Lab, Newport News, VA USA, 45Jefferson Lab, Newport News, VA USA, 46Physics Dept. U.C. Berkeley, Berkeley, CA USA, 47Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA, 48Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA, 49Physics Department, Arizona State University, Tempe, 50Physics Department, Arizona State University, Tempe, 51Los Alamos National Laboratory, Los Alamos NM USA, 52Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA, 53Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA, 54Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA, 55Physics Dept., Catholic University of America, Washington, DC USA, 56Physics Dept., Catholic University of America, Washington, DC USA, 57Physics Dept., Catholic University of America, Washington, DC USA, 58Temple University, Philadelphia PA USA, 59Temple University, Philadelphia PA USA, 60Temple University, Philadelphia PA USA, 61Temple University, Philadelphia PA USA, 62Temple University, Philadelphia PA USA, 63University Bonn, Bonn Germany, 64University Bonn, Bonn Germany, 65University Bonn, Bonn Germany, 66Physikalisches Institut Justus-Liebig-Universitt Giessen, Giessen Germany, 67Physikalisches Institut Justus-Liebig-Universitt Giessen, Giessen Germany

We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays. Read More

2013May
Affiliations: 1Laboratory for Nuclear Science, Massachusetts Institute of Technology, 2Department of Physics, Arizona State University, 3Department of Physics, Arizona State University, 4Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA, 5Laboratory for Nuclear Science, Massachusetts Institute of Technology, 6Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA, 7Laboratory for Nuclear Science, Massachusetts Institute of Technology, 8Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA, 9Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA, 10Laboratory for Nuclear Science, Massachusetts Institute of Technology, 11Laboratory for Nuclear Science, Massachusetts Institute of Technology, 12Department of Physics, Hampton University, 13Laboratory for Nuclear Science, Massachusetts Institute of Technology, 14Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA, 15Laboratory for Nuclear Science, Massachusetts Institute of Technology, 16Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA, 17Laboratory for Nuclear Science, Massachusetts Institute of Technology, 18Laboratory for Nuclear Science, Massachusetts Institute of Technology, 19Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA, 20Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA, 21Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA

Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Read More

2013May
Affiliations: 1Department of Physics, Arizona State University, USA, 2Department of Physics, Arizona State University, USA, 3Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA, 4Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 5Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA, 6Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 7Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA, 8Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA, 9Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 10Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 11Department of Physics, Hampton University, VA USA, 12Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 13Department of Physics, College of William and Mary, Williamsburg, USA, 14Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA, 15Department of Physics, University of New Hampshire, USA, 16Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 17Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA, 18Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 19Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 20Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA, 21Laboratory for Nuclear Science, Massachussetts Institute of Technology, USA, 22Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA, 23Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, VA USA

We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. Read More

High power, relativistic electron beams from energy recovery linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration for this new generation of experimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kWatt CW electron beam from the energy recovery linac at the Jefferson Laboratory's Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Read More

We propose a new precision measurement of parity-violating electron scattering on the proton at very low Q^2 and forward angles to challenge predictions of the Standard Model and search for new physics. A unique opportunity exists to carry out the first precision measurement of the proton's weak charge, $Q_W =1 - 4\sin^2\theta_W$. A 2200 hour measurement of the parity violating asymmetry in elastic ep scattering at Q^2=0. Read More