E. Henderson

E. Henderson
Are you E. Henderson?

Claim your profile, edit publications, add additional information:

Contact Details

Name
E. Henderson
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Instrumentation and Detectors (2)
 
Quantum Physics (1)
 
Physics - Accelerator Physics (1)
 
Nuclear Experiment (1)
 
High Energy Physics - Experiment (1)

Publications Authored By E. Henderson

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

2014Sep
Authors: Qweak Collaboration, T. Allison, M. Anderson, D. Androic, D. S. Armstrong, A. Asaturyan, T. D. Averett, R. Averill, J. Balewski, J. Beaufait, R. S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Bessuille, J. Birchall, E. Bonnell, J. Bowman, P. Brindza, D. B. Brown, R. D. Carlini, G. D. Cates, B. Cavness, G. Clark, J. C. Cornejo, S. Covrig Dusa, M. M. Dalton, C. A. Davis, D. C. Dean, W. Deconinck, J. Diefenbach, K. Dow, J. F. Dowd, J. A. Dunne, D. Dutta, W. S. Duvall, J. R. Echols, M. Elaasar, W. R. Falk, K. D. Finelli, J. M. Finn, D. Gaskell, M. T. W. Gericke, J. Grames, V. M. Gray, K. Grimm, F. Guo, J. Hansknecht, D. J. Harrison, E. Henderson, J. R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, J. Kelsey, N. Khan, P. M. King, E. Korkmaz, S. Kowalski, A. Kubera, J. Leacock, J. P. Leckey, A. R. Lee, J. H. Lee, L. Lee, Y. Liang, S. MacEwan, D. Mack, J. A. Magee, R. Mahurin, J. Mammei, J. W. Martin, A. McCreary, M. H. McDonald, M. J. McHugh, P. Medeiros, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, J. Musson, K. E. Mesick, A. Narayan, L. Z. Ndukum, V. Nelyubin, Nuruzzaman, W. T. H. van Oers, A. K. Opper, S. A. Page, J. Pan, K. D. Paschke, S. K. Phillips, M. L. Pitt, M. Poelker, J. F. Rajotte, W. D. Ramsay, W. R. Roberts, J. Roche, P. W. Rose, B. Sawatzky, T. Seva, M. H. Shabestari, R. Silwal, N. Simicevic, G. R. Smith, S. Sobczynski, P. Solvignon, D. T. Spayde, B. Stokes, D. W. Storey, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W. A. Tobias, V. Tvaskis, E. Urban, B. Waidyawansa, P. Wang, S. P. Wells, S. A. Wood, S. Yang, S. Zhamkochyan, R. B. Zielinski

The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. Read More

It is shown that a number of experiments designed to use entangled photon pairs in order to demonstrate the viability of quantum "teleportation" can, in fact, also be understood using disentanglement. Whether entangled or not, using an ensemble approach, the experiments can be explained without any non-local communication between Alice's photon and Bob's photon. Moreover, it is emphasized that entanglement maintains a symmetry property between the two photons that is absent in disentanglment, the symmetry being parity due to phase conerence. Read More