# E. Franco - Rome "La Sapienza" & INFN, Rome

## Contact Details

NameE. Franco |
||

AffiliationRome "La Sapienza" & INFN, Rome |
||

CityRome |
||

CountryItaly |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (40) Mathematics - Algebraic Geometry (7) High Energy Physics - Experiment (6) Computer Science - Software Engineering (1) High Energy Physics - Lattice (1) Quantitative Biology - Populations and Evolution (1) Nonlinear Sciences - Chaotic Dynamics (1) Physics - Biological Physics (1) |

## Publications Authored By E. Franco

We present a systematic study of involutions on the moduli space of $G$-Higgs bundles over an elliptic curve $X$, where $G$ is complex reductive affine algebraic group. The fixed point loci in the moduli space of $G$-Higgs bundles on $X$, and in the moduli space of representations of the fundamental group of $X$ into $G$, are described. This leads to an explicit description of the moduli spaces of pseudo-real $G$-Higgs bundles over $X$. Read More

The Y-chromosome degeneration is still an intriguing mechanism and comprises the very origin of sex. We present a coupled version of the well known logistic map and the logistic equation describing the evolution of XY chromosomes. Although chaos was found in X, Y chromosomes do not evolve chaotically. Read More

We propose four left-right symmetric extensions of several chiral 3-3-1 models. Although they have some common features they also have important difference due to different representation content. Read More

We revisit the global fit to electroweak precision observables in the Standard Model and present model-independent bounds on several general new physics scenarios. We present a projection of the fit based on the expected experimental improvements at future $e^+ e^-$ colliders, and compare the constraining power of some of the different experiments that have been proposed. All results have been obtained with the HEPfit code. Read More

Disentangling New Physics effects from the Standard Model requires a good understanding of all pieces that stem from the latter, especially the uncertainties that might plague the theoretical estimations within the Standard Model. In the light of recent measurements made in the decay of $B\to K^*\ell^+\ell^-$, and accompanying possibilities of New Physics effects, we re-examine the hadronic uncertainties that come about in this exclusive $b \to s$ transition. We show that it is not trivial to distinguish New Physics effects from these hadronic uncertainties and we attempt to quantify the latter in its magnitude and kinematic shape from the recent LHCb measurements of the angular observables in this decay mode. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

**Authors:**Eduardo Ferreira Franco

^{1}, Joaquim Rocha

^{2}, Hamilton Carvalho

^{3}, Martins Marcelo

^{4}, Kechi Hirama

^{5}

**Affiliations:**

^{1}USP,

^{2}USP,

^{3}USP,

^{4}USP,

^{5}USP

**Category:**Computer Science - Software Engineering

This paper presents an analysis of technical debt management through resources allocation policies in software maintenance process during its operation to demonstrate how different strategies leads to the emergence of different behaviors along the evolution path. To achieve this objective, this work used the System Dynamic approach for building a computational simulation model based on extensive literature review and secondary data. Most of the works that applied the System Dynamics on software projects research, focused on initial phases of its life cycle, leaving a gap to be explored regarding the long-term behaviors of the operation and maintenance phases. Read More

We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. Read More

In the context of irreducible holomorphic symplectic manifolds, we say that (anti)ho\-lo\-mor\-phic (anti)sym\-ple\-ctic involutions are brane involutions since their fixed point locus is a brane in the physicists' language, i.e. a submanifold which is either complex or lagrangian submanifold with respect to each of the three K\"ahler structures of the associated hyperk\"ahler structure. Read More

We study topologically trivial $G$-Higgs bundles over an elliptic curve $X$ when the structure group $G$ is a connected real form of a complex semisimple Lie group $G^{\mathbb{C}}$. We achieve a description of their moduli space $\mathcal{M}_X(G)$, the associated Hitchin fibration and the finite morphism $\mathcal{M}_X(G) \rightarrow \mathcal{M}_X(G^{\mathbb{C}})$ to the moduli space of $G^{\mathbb{C}}$-Higgs bundles. Read More

We study the moduli space $\mathbf{M}_X(\Lambda, n)$ of semistable $\Lambda$-modules of vanishing Chern classes over an abelian variety $X$, where $\Lambda$ belongs to a certain subclass of $D$-algebras. In particular, for $\Lambda = \mathcal{D}_X$ (resp. $\Lambda = \mathrm{Sym}^\bullet \mathcal{O}_X$) we obtain a description of the moduli spaces of flat connections (resp. Read More

We critically reassess the theoretical uncertainties in the Standard Model calculation of the $B \to K^* \ell^+ \ell^-$ observables, focusing on the low $q^2$ region. We point out that even optimized observables are affected by sizable uncertainties, since hadronic contributions generated by current-current operators with charm are difficult to estimate, especially for $q^2 \sim 4 m_c^2\simeq 6.8$ GeV$^2$. Read More

A seesaw mechanism is presented in the neutrino sector and a new phase of CP violation ($\alpha$) emerges in the interplay between the type-I and type-III seesaw schemes. This phase is inside the mixing term, and thus it cannot be rotated away in the Yukawa Lagrangian and, therefore, the heavy symmetry states cannot be in a diagonal weak basis in the broken phase. Some particular descriptions are analyzed suggesting that if the usual Yukawa couplings are suppressed, leptogenesis still occurs due to a new interacting vertex with fermion triplet $T$, fermion singlets $N$, and an ad-hoc scalar triplet, $\Sigma$, which now is included to mediate the interactions. Read More

In the physicist's language, a brane in a hyperkahler manifold is a submanifold which is either complex or lagrangian with respect to three Kahler structures of the ambient manifold. By considering the fixed loci of certain involutions, we describe branes in Nakajima quiver varieties of all possible types. We then focus on the moduli space of framed torsion free sheaves on the projective plane, showing how the involutions considered act on sheaves, and proving the existence of branes in some cases. Read More

We present here the update of the Unitarity Triangle (UT) analysis performed by the UTfit Collaboration within the Standard Model (SM) and beyond. Continuously updated flavour results contribute to improving the precision of several constraints and through the global fit of the CKM parameters and the SM predictions. We also extend the UT analysis to investigate new physics (NP) effects on $\Delta F=2$ processes. Read More

We present updated global fits of the Standard Model and beyond to electroweak precision data, taking into account recent progress in theoretical calculations and experimental measurements. From the fits, we derive model-independent constraints on new physics by introducing oblique and epsilon parameters, and modified $Zb\bar{b}$ and $HVV$ couplings. Furthermore, we also perform fits of the scale factors of the Higgs-boson couplings to observed signal strengths of the Higgs boson. Read More

We present preliminary results of a bayesian fit to the Wilson coefficients of the Standard Model gauge invariant dimension-6 operators involving one or more Higgs fields, using data on electroweak precision observables and Higgs boson signal strengths. Read More

We update the analysis of $D$ meson mixing including the latest experimental results as of January 2014. We derive constraints on the parameters $M_{12}$, $\Gamma_{12}$ and $\Phi_{12}$ that describe $D$ meson mixing using all available data, allowing for CP violation. We also provide posterior distributions for observable parameters appearing in $D$ physics. Read More

We study Higgs bundles over an elliptic curve with connected complex reductive structure group, describing their moduli spaces and the associated Hitchin fibration; it follows from our description that these spaces are irreducible and normal. We also describe the other spaces involved in non-abelian Hodge theory, namely the moduli spaces of bundles with projectively flat connections and representations of surface groups. Read More

We perform the fit of electroweak precision observables within the Standard Model with a 126 GeV Higgs boson, compare the results with the theoretical predictions and discuss the impact of recent experimental and theoretical improvements. We introduce New Physics contributions in a model-independent way and fit for the S, T and U parameters, for the $\epsilon_{1,2,3,b}$ ones, for modified $Zb\bar{b}$ couplings and for a modified Higgs coupling to vector bosons. We point out that composite Higgs models are very strongly constrained. Read More

In this paper we study $G$-Higgs bundles over an elliptic curve when the structure group $G$ is a classical complex reductive Lie group. Modifying the notion of family, we define a new moduli problem for the classification of semistable $G$-Higgs bundles of a given topological type over an elliptic curve and we give an explicit description of the associated moduli space as a finite quotient of a product of copies of the cotangent bundle of the elliptic curve. We construct a bijective morphism from this new moduli space to the usual moduli space of semistable $G$-Higgs bundles, proving that the former is the normalization of the latter. Read More

We derive constraints on the parameters $M_{12}$, $\Gamma_{12}$ and $\Phi_{12}$ that describe $D$ meson mixing using all available data, allowing for CP violation. We also provide posterior distributions and predictions for observable parameters appearing in $D$ physics. Read More

We propose to perform a combined analysis of $B \to \pi\pi$ and $B_s \to K^+ K^-$ modes, in the framework of a global CKM fit. The method optimizes the constraining power of these decays and allows to derive constraints on NP contributions to penguin amplitudes or on the $B_s$ mixing phase. We illustrate these capabilities with a simplified analysis using the recent measurements by the LHCb Collaboration, neglecting correlations with other SM observables. Read More

The recently measured direct CP asymmetries in the processes $D^0\to \pi^+\pi^-$ and $D^0\to K^+K^-$ show a significant deviation from the naive Standard Model expectation. Using a general parameterization of the decay amplitudes, we show that the measured branching ratios imply large SU(3) breaking and large violations of the naive $1/N_c$ counting. Furthermore, rescattering constrains the I=0 amplitudes in the $\pi\pi$ and $KK$ channels. Read More

We are at the beginning of a shift in how content is created and exchanged over the web. While content was previously created primarily by a small set of entities, today, individual users -- empowered by devices like digital cameras and services like online social networks -- are creating content that represents a significant fraction of Internet traffic. As a result, content today is increasingly generated and exchanged at the edge of the network. Read More

Here we ask if it is possible to have string unification in $\mathsf{SU(5)\times SU(5)}$ gauge group. We specifically investigate the weakly coupled heterotic string unification for the four couplings in this framework. We show that only a limited versions of $\mathsf{SU(5)\times SU(5)}$ with adjoint representation components at intermediated scales, between $M_Z$ and $\Lambda$ (unification), are allowed. Read More

The idea of grand unification in a minimal supersymmetric SU(5)xSU(5) framework is revisited. It is shown that the unification of gauge couplings into a unique coupling constant can be achieved at a high-energy scale compatible with proton decay constraints. This requires the addition of a minimal particle content at intermediate energy scales. Read More

We present the status of the Unitarity Triangle Analysis (UTA), within the Standard Model (SM) and beyond, with experimental and theoretical inputs updated for the ICHEP 2010 conference. Within the SM, we find that the general consistency among all the constraints leaves space only to some tension (between the UTA prediction and the experimental measurement) in BR(B -> tau nu), sin(2 beta) and epsilon_K. In the UTA beyond the SM, we allow for New Physics (NP) effects in (Delta F)=2 processes. Read More

We present an update of the Unitarity Triangle (UT) analysis, within the Standard Model (SM) and beyond. Within the SM the main novelties are the inclusion in epsilon_K of the contributions of xi and phi_epsilon \neq \pi/4 pointed out by A.J. Read More

The recently measured B -> tau nu branching ratio allows to test the Standard Model by probing virtual effects of new heavy particles, such as a charged Higgs boson. The accuracy of the test is currently limited by the experimental error on BR(B -> tau nu) and by the uncertainty on the parameters fB and |Vub|. The redundancy of the Unitarity Triangle fit allows to reduce the error on these parameters and thus to perform a more precise test of the Standard Model. Read More

**Authors:**M. Antonelli, D. M. Asner, D. Bauer, T. Becher, M. Beneke, A. J. Bevan, M. Blanke, C. Bloise, M. Bona, A. Bondar, C. Bozzi, J. Brod, A. J. Buras, N. Cabibbo, A. Carbone, G. Cavoto, V. Cirigliano, M. Ciuchini, J. P. Coleman, D. P. Cronin-Hennessy, J. P. Dalseno, C. H. Davies, F. DiLodovico, J. Dingfelder, Z. Dolezal, S. Donati, W. Dungel, U. Egede, G. Eigen, R. Faccini, T. Feldmann, F. Ferroni, J. M. Flynn, E. Franco, M. Fujikawa, I. K. Furic, P. Gambino, E. Gardi, T. J. Gershon, S. Giagu, E. Golowich, T. Goto, C. Greub, C. Grojean, D. Guadagnoli, U. A. Haisch, R. F. Harr, A. H. Hoang, T. Hurth, G. Isidori, D. E. Jaffe, A. Jüttner, S. Jäger, A. Khodjamirian, P. Koppenburg, R. V. Kowalewski, P. Krokovny, A. S. Kronfeld, J. Laiho, G. Lanfranchi, T. E. Latham, J. Libby, A. Limosani, D. Lopes Pegna, C. D. Lu, V. Lubicz, E. Lunghi, V. G. Lüth, K. Maltman, W. J. Marciano, E. C. Martin, G. Martinelli, F. Martinez-Vidal, A. Masiero, V. Mateu, F. Mescia, G. Mohanty, M. Moulson, M. Neubert, H. Neufeld, S. Nishida, N. Offen, M. Palutan, P. Paradisi, Z. Parsa, E. Passemar, M. Patel, B. D. Pecjak, A. A. Petrov, A. Pich, M. Pierini, B. Plaster, A. Powell, S. Prell, J. Rademaker, M. Rescigno, S. Ricciardi, P. Robbe, E. Rodrigues, M. Rotondo, R. Sacco, C. J. Schilling, O. Schneider, E. E. Scholz, B. A. Schumm, C. Schwanda, A. J. Schwartz, B. Sciascia, J. Serrano, J. Shigemitsu, I. J. Shipsey, A. Sibidanov, L. Silvestrini, F. Simonetto, S. Simula, C. Smith, A. Soni, L. Sonnenschein, V. Sordini, M. Sozzi, T. Spadaro, P. Spradlin, A. Stocchi, N. Tantalo, C. Tarantino, A. V. Telnov, D. Tonelli, I. S. Towner, K. Trabelsi, P. Urquijo, R. S. Van de Water, R. J. Van Kooten, J. Virto, G. Volpi, R. Wanke, S. Westhoff, G. Wilkinson, M. Wingate, Y. Xie, J. Zupan

**Category:**High Energy Physics - Phenomenology

One of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor and measurements and theoretical interpretations of their results have advanced tremendously: apart from masses and quantum numbers of flavor particles, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. Till early 1990s observations of CP violation were confined to neutral $K$ mesons, but since then a large number of CP-violating processes have been studied in detail in neutral $B$ mesons. Read More

The UT{\it{fit}} Collaboration has produced several analyses in the context of flavour physics both within and beyond the Standard Model. In this paper we present updated results for the Standard Model analysis of the Unitarity Triangle using the latest experimental and lattice QCD inputs, as well as an update of the Unitarity Triangle analysis in a scenario beyond the Standard Model. Combining all available experimental and theoretical information on $\Delta F=2$ processes and using a model-independent parameterization, we extract the allowed New Physics contributions in the $K^0$, $D^0$, $B_d$, and $B_s$ sectors. Read More

The implementation of seesaw mechanisms to give mass to neutrinos in the presence of an anomaly-free U(1)_X gauge symmetry is discussed in the context of minimal extensions of the standard model. It is shown that type-I and type-III seesaw mechanisms cannot be simultaneously implemented with an anomaly-free local U(1)_X, unless the symmetry is a replica of the well-known hypercharge. For combined type-I/II or type-III/II seesaw models it is always possible to find nontrivial anomaly-free charge assignments, which are however tightly constrained, if the new neutral gauge boson is kinematically accessible at LHC. Read More

We propose a method to quantify the Standard Model uncertainty in B to K pi decays using the experimental data, assuming that power counting provides a reasonable estimate of the subleading terms in the 1/mb expansion. Using this method, we show that present B to K pi data are compatible with the Standard Model. We analyze the pattern of subleading terms required to reproduce the B to K pi data and argue that anomalously large subleading terms are not needed. Read More

We combine all the available experimental information on Bs mixing, including the very recent tagged analyses of Bs to J/Psi phi by the CDF and D0 collaborations. We find that the phase of the Bs mixing amplitude deviates more than 3 sigma from the Standard Model prediction. While no single measurement has a 3 sigma significance yet, all the constraints show a remarkable agreement with the combined result. Read More

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at $M_Z$, of $\alpha$, $\alpha_s$, and $\sin^2\theta_W$. A discrete, anomalous, $Z_{13}$ symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semi-classical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the $Z_{13}$ symmetry. Read More

We update the constraints on new-physics contributions to Delta F=2 processes from the generalized unitarity triangle analysis, including the most recent experimental developments. Based on these constraints, we derive upper bounds on the coefficients of the most general Delta F=2 effective Hamiltonian. These upper bounds can be translated into lower bounds on the scale of new physics that contributes to these low-energy effective interactions. Read More

Combining the recently available experimental evidence of D-Dbar mixing, we extract model-independent information on the mixing amplitude and on its CP-violating phase. Using this information, we present new constraints on the flavour structure of up-type squark mass matrices in supersymmetric extensions of the Standard Model. Read More

Motivated by a recent paper that compares the results of the analysis of the CKM angle alpha in the frequentist and in the Bayesian approaches, we have reconsidered the information on the hadronic amplitudes, which helps constraining the value of alpha in the Standard Model. We find that the Bayesian method gives consistent results irrespective of the parametrisation of the hadronic amplitudes and that the results of the frequentist and Bayesian approaches are equivalent when comparing meaningful probability ranges or confidence levels. We also find that from B to pi pi decays alone the 95% probability region for alpha is the interval [80^o,170^o], well consistent with recent analyses of the unitarity triangle where, by using all the available experimental and theoretical information, one gets alpha = (93 +- 4)^o. Read More

We compute the next-to-leading order strong interaction corrections to gluino-mediated Delta F=2 box diagrams in the Minimal Supersymmetric Standard Model. These corrections are given by two loop diagrams which we have calculated in three different regularization schemes in the mass insertion approximation. We obtain the next-to-leading order Wilson coefficients of the Delta F=2 effective Hamiltonian relevant for neutral meson mixings. Read More

The recent measurements of the B_s meson mixing amplitude by CDF and of the leptonic branching fraction BR(B to tau nu) by Belle call for an upgraded analysis of the Unitarity Triangle in the Standard Model. Besides improving the previous constraints on the parameters of the CKM matrix, these new measurements, combined with the recent determinations of the angles alpha, beta and gamma from non-leptonic decays, allow, in the Standard Model, a quite accurate extraction of the values of the hadronic matrix elements relevant for K-Kbar and B_{s,d}-B_{s,d}bar mixing and of the leptonic decay constant f_B. These values, obtained ``experimentally'', can then be compared with the theoretical predictions, mainly from lattice QCD. Read More

The status of the Unitarity Triangle beyond the Standard Model including the most recent results on Delta m_s, on dilepton asymmetries and on width differences is presented. Even allowing for general New Physics loop contributions the Unitarity Triangle must be very close to the Standard Model result. With the new measurements from the Tevatron, we obtain for the first time a significant constraint on New Physics in the B_s sector. Read More

**Authors:**M. Ciuchini

^{1}, E. Franco

^{2}, D. Guadagnoli

^{3}, V. Lubicz

^{4}, V. Porretti

^{5}, L. Silvestrini

^{6}

**Affiliations:**

^{1}Roma Tre & INFN, Roma Tre,

^{2}Rome "La Sapienza" & INFN, Rome,

^{3}Rome "La Sapienza" & INFN, Rome,

^{4}Roma Tre & INFN, Roma Tre,

^{5}Roma Tre & INFN, Roma Tre,

^{6}Rome "La Sapienza" & INFN, Rome

**Category:**High Energy Physics - Phenomenology

We present the NLO corrections to the Wilson coefficients of the Delta F = 2 Hamiltonians in the strong interacting sector of the MSSM, responsible for neutral meson oscillations. Such corrections, combined with the NLO anomalous dimension matrix for the Delta F = 2 operators and the corresponding hadronic matrix elements calculated on the lattice, allow for the first time a full NLO phenomenological analysis of the observables related to meson oscillations. We present preliminary results in the B_d - B_d bar sector. Read More

We consider the QCD corrections to the electric dipole moment of the neutron in the Minimal Supersymmetric Standard Model. We provide a master formula for the Wilson coefficients at the low energy scale including for the first time the mixing between the electric and chromoelectric operators and correcting widely used previous LO estimates. We show that, because of the mixing between the electric and chromoelectric operators, the neutralino contribution is always strongly suppressed. Read More

Starting from a (new physics independent) tree level determination of rhobar and etabar, we perform the Unitarity Triangle analysis in general extensions of the Standard Model with arbitrary new physics contributions to loop-mediated processes. Using a simple parameterization, we determine the allowed ranges of non-standard contributions to |Delta F|=2 processes. Remarkably, the recent measurements from B factories allow us to determine with good precision the shape of the Unitarity Triangle even in the presence of new physics, and to derive stringent constraints on non-standard contributions to |Delta F|=2 processes. Read More

Using the latest determinations of several theoretical and experimental parameters, we update the Unitarity Triangle analysis in the Standard Model. The basic experimental constraints come from the measurements of |V_ub/V_cb|, Delta M_d, the lower limit on Delta M_s, epsilon_k, and the measurement of the phase of the B_d - anti B_d mixing amplitude through the time-dependent CP asymmetry in B^0 to J/psi K^0 decays. In addition, we consider the direct determination of alpha, gamma, 2 beta + gamma and cos(2 beta) from the measurements of new CP-violating quantities, recently performed at the B factories. Read More

Using the most recent determinations of several theoretical and experimental parameters, we update the Unitarity Triangle analysis in the Standard Model. The basic experimental constraints come from the measurements of epsilon_k, Vub/Vcb and Delta m_d, the limit on Delta m_s, and the measurement of the CP asymmetry in the B sector through the J/psi K^0 channel. In addition we also include in our analysis the direct determination of sin 2 alpha, gamma and sin(2 beta + gamma) from the measurements of new CP-violating quantities, recently coming from the B-Factories. Read More

We briefly discuss the phenomenology of B to pi pi, B to K pi and B to phi K decays in the Standard Model and in Supersymmetry. Read More

We compute the next-to-leading order QCD corrections to the off-diagonal elements of the decay-width matrix Gamma entering the neutral B-meson oscillations. From this calculation the width differences DeltaGamma and the CP violation parameters (q/p) of Bd and Bs mesons are estimated, including the complete O}(alpha_s) QCD corrections and the 1/mb contributions. For the width difference DeltaGamma_s we agree with previous results. Read More

We discuss the twofold role of flavor and CP violation as a constraint in model building and as a signal of SUSY. Considering as an example b to s transitions, we analyze present bounds on SUSY parameters, discuss possible deviations from SM predictions in Bd and Bs physics and present strategies to reveal SUSY signals in present and future experiments in the CKM domain. Read More