E. D. Barr - INRIA Lille - Nord Europe

E. D. Barr
Are you E. D. Barr?

Claim your profile, edit publications, add additional information:

Contact Details

E. D. Barr
INRIA Lille - Nord Europe

Pubs By Year

External Links

Pub Categories

High Energy Astrophysical Phenomena (21)
Instrumentation and Methods for Astrophysics (6)
Computer Science - Software Engineering (5)
Solar and Stellar Astrophysics (5)
Astrophysics of Galaxies (4)
Computer Science - Cryptography and Security (2)
Computer Science - Computational Complexity (1)
General Relativity and Quantum Cosmology (1)
Cosmology and Nongalactic Astrophysics (1)
Nuclear Theory (1)
Computer Science - Artificial Intelligence (1)
Computer Science - Computation and Language (1)
Computer Science - Neural and Evolutionary Computing (1)

Publications Authored By E. D. Barr

We present the first interferometric detections of Fast Radio Bursts (FRBs), an enigmatic new class of astrophysical transient. In a 180-day survey of the Southern sky we discovered 3 FRBs at 843 MHz with the UTMOST array, as part of commissioning science during a major ongoing upgrade. The wide field of view of UTMOST ($\approx 9$ deg$^{2}$) is well suited to FRB searches. Read More

Here we present an in-depth study of the behaviour of the Fast Folding Algorithm, an alternative pulsar searching technique to the Fast Fourier Transform. Weaknesses in the Fast Fourier Transform, including a susceptibility to red noise, leave it insensitive to pulsars with long rotational periods (P > 1 s). This sensitivity gap has the potential to bias our understanding of the period distribution of the pulsar population. Read More

To enhance developer productivity, all modern integrated development environments (IDEs) include code suggestion functionality that proposes likely next tokens at the cursor. While current IDEs work well for statically-typed languages, their reliance on type annotations means that they do not provide the same level of support for dynamic programming languages as for statically-typed languages. Moreover, suggestion engines in modern IDEs do not propose expressions or multi-statement idiomatic code. Read More

The recent discovery of a population of eccentric (e ~ 0.1) millisecond pulsar (MSP) binaries with low-mass white dwarf companions in the Galactic field represents a challenge to evolutionary models that explain MSP formation as recycling: all such models predict that the orbits become highly circularised during a long period of accretion. The members of this new population exhibit remarkably similar properties (orbital periods, eccentricities, companion masses, spin periods) and several models have been put forward that suggest a common formation channel. Read More

Mutation analysis measures test suite adequacy, the degree to which a test suite detects seeded faults: one test suite is better than another if it detects more mutants. Mutation analysis effectiveness rests on the assumption that mutants are coupled with real faults i.e. Read More

We present observations made with the Australia Telescope Compact Array (ATCA), the Jansky Very Large Array (JVLA) and the Giant Metre-Wave Telescope of the radio source within the galaxy WISE~J071634.59-190039.2, claimed to be host of FRB~150418 by Keane et al. Read More

Malware creators have been getting their way for too long now. String-based similarity measures can leverage ground truth in a scalable way and can operate at a level of abstraction that is difficult to combat from the code level. We introduce ITect, a scalable approach to malware similarity detection based on information theory. Read More

A fading radio source, coincident in time and position with the fast radio burst FRB150418, has been associated with the galaxy WISE J071634.59-190039.2. Read More

The mass function of neutron stars (NSs) contains information about the late evolution of massive stars, the supernova explosion mechanism, and the equation-of-state of cold, nuclear matter beyond the nuclear saturation density. A number of recent NS mass measurements in binary millisecond pulsar (MSP) systems increase the fraction of massive NSs (with $M > 1.8$ M$_{\odot}$) to $\sim 20\% $ of the observed population. Read More

In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Read More

Here we present a catalogue of known Fast Radio Burst (FRB) sources in the form of an online catalogue, FRBCAT. The catalogue includes information about the instrumentation used for the observations for each detected burst, the measured quantities from each observation, and model-dependent quantities derived from observed quantities. To aid in consistent comparisons of burst properties such as width and signal-to-noise ratios we have reprocessed all the bursts for which we have access to the raw data, with software which we make available. Read More

We report the first radio interferometric search at 843 MHz for fast transients, particularly Fast Radio Bursts (FRBs). The recently recommissioned Swinburne University of Technology's digital backend for the Molonglo Observatory Synthesis Telescope array (the UTMOST) with its large collecting area (18,000 $\mathrm{m^2}$) and wide instantaneous field of view (7.80 $\mathrm{deg^2}$) is expected to be an efficient tool to detect FRBs. Read More

High time resolution radio surveys over the last few years have discovered a population of millisecond-duration transient bursts called Fast Radio Bursts (FRBs), which remain of unknown origin. FRBs exhibit dispersion consistent with propagation through a cold plasma and dispersion measures indicative of an origin at cosmological distances. In this paper we perform Monte Carlo simulations of a cosmological population of FRBs, based on assumptions consistent with observations of their energy distribution, their spatial density as a function of redshift and the properties of the interstellar and intergalactic media. Read More

The detection of five new fast radio bursts (FRBs) found in the High Time Resolution Universe high latitude survey is presented. The rate implied is 6$^{+4}_{-3}\times~10^3$ (95%) FRBs sky$^{-1}$ day$^{-1}$ above a fluence of between 0.13 and 5. Read More

Several theories exist to explain the source of the bright, millisecond duration pulses known as fast radio bursts (FRBs). If the progenitors of FRBs are non-cataclysmic, such as giant pulses from pulsars, pulsar-planet binaries, or magnetar flares, FRB emission may be seen to repeat. We have undertaken a survey of the fields of eight known FRBs from the High Time Resolution Universe survey to search for repeating pulses. Read More

We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. Read More

"Perytons" are millisecond-duration transients of terrestrial origin, whose frequency-swept emission mimics the dispersion of an astrophysical pulse that has propagated through tenuous cold plasma. In fact, their similarity to FRB 010724 had previously cast a shadow over the interpretation of "fast radio bursts," which otherwise appear to be of extragalactic origin. Until now, the physical origin of the dispersion-mimicking perytons had remained a mystery. Read More

This work focuses on a specific front of the malware detection arms-race, namely the detection of persistent, disk-resident malware. We exploit normalised compression distance (NCD), an information theoretic measure, applied directly to binaries. Given a zoo of labelled malware and benign-ware, we ask whether a suspect program is more similar to our malware or to our benign-ware. Read More

Fixing a software error requires understanding its root cause. In this paper, we introduce ''causality traces'', crafted execution traces augmented with the information needed to reconstruct the causal chain from the root cause of a bug to an execution error. We propose an approach and a tool, called Casper, for dynamically constructing causality traces for null dereference errors. Read More

Natural language is robust against noise. The meaning of many sentences survives the loss of words, sometimes many of them. Some words in a sentence, however, cannot be lost without changing the meaning of the sentence. Read More

Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for the first time. We have discovered an FRB (FRB 140514) in real-time on 14 May, 2014 at 17:14:11. Read More

We present the discovery of a further five recycled pulsar systems in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods ranging from 2 ms to 66 ms, and four are in binary systems with orbital periods between 10.8 hours and 9. Read More

We describe SPINN (Straightforward Pulsar Identification using Neural Networks), a high-performance machine learning solution developed to process increasingly large data outputs from pulsar surveys. SPINN has been cross-validated on candidates from the southern High Time Resolution Universe (HTRU) survey and shown to identify every known pulsar found in the survey data while maintaining a false positive rate of 0.64%. Read More

Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. (2013) has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. Read More

Every programmer has a characteristic style, ranging from preferences about identifier naming to preferences about object relationships and design patterns. Coding conventions define a consistent syntactic style, fostering readability and hence maintainability. When collaborating, programmers strive to obey a project's coding conventions. Read More

We report on the setup and initial discoveries of the Northern High Time Resolution Universe survey for pulsars and fast transients, the first major pulsar survey conducted with the 100-m Effelsberg radio telescope and the first in 20 years to observe the whole northern sky at high radio frequencies. Using a newly developed 7-beam receiver system combined with a state-of-the-art polyphase filterbank, we record an effective bandwidth of 240 MHz in 410 channels centred on 1.36 GHz with a time resolution of 54 $\mu$s. Read More

Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated gamma-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al., 2010). Read More

We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. Read More

We report on a multi-wavelength study of the compact object candidate 1RXS J141256.0+792204 (Calvera). Calvera was observed in the X-rays with XMM/EPIC twice for a total exposure time of ~50 ks. Read More