Doug Johnstone - Herzberg Institute of Astrophysics

Doug Johnstone
Are you Doug Johnstone?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Doug Johnstone
Affiliation
Herzberg Institute of Astrophysics
Location

Pubs By Year

External Links

Pub Categories

 
Astrophysics of Galaxies (22)
 
Solar and Stellar Astrophysics (18)
 
Astrophysics (17)
 
Earth and Planetary Astrophysics (3)
 
Instrumentation and Methods for Astrophysics (2)

Publications Authored By Doug Johnstone

2017Apr
Authors: Derek Ward-Thompson, Kate Pattle, Pierre Bastien, Ray S. Furuya, Woojin Kwon, Shih-Ping Lai, Keping Qiu, David Berry, Minho Choi, Simon Coudé, James Di Francesco, Thiem Hoang, Erica Franzmann, Per Friberg, Sarah F. Graves, Jane S. Greaves, Martin Houde, Doug Johnstone, Jason M. Kirk, Patrick M. Koch, Jungmi Kwon, Chang Won Lee, Di Li, Brenda C. Matthews, Joseph C. Mottram, Harriet Parsons, Andy Pon, Ramprasad Rao, Mark Rawlings, Hiroko Shinnaga, Sarah Sadavoy, Sven van Loo, Yusuke Aso, Do-Young Byun, Eswariah Chakali, Huei-Ru Chen, Mike C. -Y. Chen, Wen Ping Chen, Tao-Chung Ching, Jungyeon Cho, Antonio Chrysostomou, Eun Jung Chung, Yasuo Doi, Emily Drabek-Maunder, Stewart P. S. Eyres, Jason Fiege, Rachel K. Friesen, Gary Fuller, Tim Gledhill, Matt J. Griffin, Qilao Gu, Tetsuo Hasegawa, Jennifer Hatchell, Saeko S. Hayashi, Wayne Holland, Tsuyoshi Inoue, Shu-ichiro Inutsuka, Kazunari Iwasaki, Il-Gyo Jeong, Ji-hyun Kang, Miju Kang, Sung-ju Kang, Koji S. Kawabata, Francisca Kemper, Gwanjeong Kim, Jongsoo Kim, Kee-Tae Kim, Kyoung Hee Kim, Mi-Ryang Kim, Shinyoung Kim, Kevin M. Lacaille, Jeong-Eun Lee, Sang-Sung Lee, Dalei Li, Hua-bai Li, Hong-Li Liu, Junhao Liu, Sheng-Yuan Liu, Tie Liu, A-Ran Lyo, Steve Mairs, Masafumi Matsumura, Gerald H. Moriarty-Schieven, Fumitaka Nakamura, Hiroyuki Nakanishi, Nagayoshi Ohashi, Takashi Onaka, Nicolas Peretto, Tae-Soo Pyo, Lei Qian, Brendan Retter, John Richer, Andrew Rigby, Jean-François Robitaille, Giorgio Savini, Anna M. M. Scaife, Archana Soam, Motohide Tamura, Ya-Wen Tang, Kohji Tomisaka, Hongchi Wang, Jia-Wei Wang, Anthony P. Whitworth, Hsi-Wei Yen, Hyunju Yoo, Jinghua Yuan, Chuan-Peng Zhang, Guoyin Zhang, Jianjun Zhou, Lei Zhu, Philippe André, C. Darren Dowell, Sam Falle, Yusuke Tsukamoto

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. Read More

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of molecular line emission from d216-0939, one of the largest and most massive protoplanetary disks in the Orion Nebula Cluster (ONC). We model the spectrally resolved HCO$^+$ (4--3), CO (3--2), and HCN (4--3) lines observed at 0\farcs5 resolution to fit the temperature and density structure of the disk. We also weakly detect and spectrally resolve the CS (7--6) line but do not model it. Read More

Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. Read More

We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starless cores and protostars. We determine masses and densities for each of our sources, using source temperatures determined by the Herschel Gould Belt Survey. Read More

We present a comparison of SCUBA-2 850-$\mu$m and Herschel 70--500-$\mu$m observations of the L1495 filament in the Taurus Molecular Cloud with the goal of characterising the SCUBA-2 Gould Belt Survey (GBS) data set. We identify and characterise starless cores in three data sets: SCUBA-2 850-$\mu$m, Herschel 250-$\mu$m, and Herschel 250-$\mu$m spatially filtered to mimic the SCUBA-2 data. SCUBA-2 detects only the highest-surface-brightness sources, principally detecting protostellar sources and starless cores embedded in filaments, while Herschel is sensitive to most of the cloud structure, including extended low-surface-brightness emission. Read More

Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. Read More

We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. Read More

This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Read More

We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope "cores to disks" (c2d) and "Gould Belt" (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the Gould Belt. We compile extinction corrected SEDs for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. Read More

We present ALMA observations of the largest protoplanetary disk in the Orion Nebula, 114-426. Detectable 345 GHz (856 micron) dust continuum is produced only in the 350 AU central region of the ~1000 AU diameter silhouette seen against the bright H-alpha background in HST images. Assuming optically thin dust emission at 345 GHz, a gas-to-dust ratio of 100, and a grain temperature of 20 K, the disk gas-mass is estimated to be 3. Read More

We present the results from a Submillimeter Array survey of the 887 micron continuum emission from the protoplanetary disks around 95 young stars in the young cluster NGC 2024. Emission was detected from 22 infrared sources, with flux densities from ~5 to 330 mJy; upper limits (at 3sigma) for the other 73 sources range from 3 to 24 mJy. For standard assumptions, the corresponding disk masses range from ~0. Read More

We present, as a case study, a description of the partnership between an observatory (JCMT) and a data centre (CADC) that led to the development of the JCMT Science Archive (JSA). The JSA is a successful example of a service designed to use Virtual Observatory (VO) technologies from the start. We describe the motivation, process and lessons learned from this approach. Read More

CO, $^{13}$CO and C$^{18}$O ${\it J}$ = 3--2 observations are presented of the Ophiuchus molecular cloud. The $^{13}$CO and C$^{18}$O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F and J regions. The optically thin(ner) C$^{18}$O line is used as a column density tracer, from which the gravitational binding energy is estimated to be $4. Read More

We present ALMA observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. Read More

Giant molecular clouds contain supersonic turbulence and magnetohydrodynamic simulations predict that this turbulence should decay rapidly. Such turbulent dissipation has the potential to create a warm (T ~100 K) gas component within a molecular cloud. We present observations of the CO J = 5-4 and 6-5 transitions, taken with the Herschel Space Observatory, towards the Perseus B1-East 5 region. Read More

Winds and supernovae from OB associations create large cavities in the interstellar medium referred to as superbubbles. The Orion molecular clouds are the nearest high mass star-forming region and have created a highly elongated, 20 degree x 45 degree, superbubble. We fit Kompaneets models to the Orion-Eridanus superbubble and find that a model where the Eridanus side of the superbubble is oriented away from the Sun provides a marginal fit. Read More

2014Apr
Affiliations: 1University of Leeds, 2Joint Astronomy Centre, 3University of Colorado, 4University of California Berkeley

The Orion-Eridanus superbubble, formed by the nearby Orion high mass star-forming region, contains multiple bright H$\alpha$ filaments on the Eridanus side of the superbubble. We examine the implications of the H$\alpha$ brightnesses and sizes of these filaments, the Eridanus filaments. We find that either the filaments must be highly elongated along the line of sight or they cannot be equilibrium structures illuminated solely by the Orion star-forming region. Read More

We present ALMA observations of protoplanetary disks ("proplyds") in the Orion Nebula Cluster. We imaged 5 individual fields at 856um containing 22 HST-identified proplyds and detected 21 of them. Eight of those disks were detected for the first time at submillimeter wavelengths, including the most prominent, well-known proplyd in the entire Orion Nebula, 114-426. Read More

Interpreting the nature of starless cores has been a prominent goal in star formation for many years. In order to characterise the evolutionary stages of these objects, we perform synthetic observations of a numerical simulation of a turbulent molecular cloud. We find that nearly all cores that we detect are associated with filaments and eventually form protostars. Read More

We review recent advances in the analytical and numerical modeling of the star formation rate in molecular clouds and discuss the available observational constraints. We focus on molecular clouds as the fundamental star formation sites, rather than on the larger-scale processes that form the clouds and set their properties. Molecular clouds are shaped into a complex filamentary structure by supersonic turbulence, with only a small fraction of the cloud mass channeled into collapsing protostars over a free-fall time of the system. Read More

We present a survey of HCO+ (3-2) observations pointed towards dense cores with previous measurements of N(N2D+)/N(N2H+). Of the 26 cores in this survey, five show the spectroscopic signature of outward motion, nine exhibit neither inward nor outward motion, eleven appear to be infalling, and one is not detected. We compare the degree of deuterium fractionation with infall velocities calculated from the HCO+ spectra and find that those cores with [D]/[H] > 0. Read More

Stars may be assembled in large growth spurts, however the evidence for this hypothesis is circumstantial. Directly studying the accretion at the earliest phases of stellar growth is challenging because young stars are deeply embedded in optically thick envelopes, which have spectral energy distributions that peak in the far-IR, where observations are difficult. In this paper, we consider the feasibility of detecting accretion outbursts from these younger stars by investigating the timescales for how the protostellar envelope responds to changes in the emission properties of the central source. Read More

Filamentary structures are ubiquitous from large-scale molecular clouds (few parsecs) to small-scale circumstellar envelopes around Class 0 sources (~1000 AU to ~0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (few parsecs) and star formation. Read More

2012Jul
Affiliations: 1University of Victoria, 2Insituto de Astrofísica de Andalucía, 3National Research Council of Canada, 4CRyA-UNAM, 5University of North Carolina Chapel Hill, 6CRyA-UNAM

We investigate the collapse of non-spherical substructures, such as sheets and filaments, which are ubiquitous in molecular clouds. Such non-spherical substructures collapse homologously in their interiors but are influenced by an edge effect that causes their edges to be preferentially accelerated. We analytically compute the homologous collapse timescales of the interiors of uniform-density, self-gravitating filaments and find that the homologous collapse timescale scales linearly with the aspect ratio. Read More

We present SMA and CARMA continuum and spectral line observations of five dense cores located in the Perseus and Ophiuchus molecular clouds whose masses exceed their thermal Jeans masses. Three of these cores have previously been identified as being starless and two have been classified as being possibly protostellar. We find that one core is certainly protostellar. Read More

Intermediate mass protostars, the bridge between the very common solar-like protostars and the more massive, but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper we present and analyze the continuum results from an observing campaign at the Submillimeter Array targeting two well-studied intermediate mass protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA) probes structure at angular resolutions up to 0. Read More

In this paper, we present the results of CARMA continuum and spectral line observations of the dense core Per-Bolo 45. Although this core has previously been classified as starless, we find evidence for an outflow and conclude that Per-Bolo 45 is actually an embedded, low-luminosity protostar. We discuss the impact of newly discovered, low-luminosity, embedded objects in the Perseus molecular cloud on starless core and protostar lifetimes. Read More

We utilize the extensive datasets available for the Perseus molecular cloud to analyze the relationship between the kinematics of small-scale dense cores and the larger structures in which they are embedded. The kinematic measures presented here can be used in conjunction with those discussed in our previous work as strong observational constraints that numerical simulations (or analytic models) of star formation should match. We find that dense cores have small motions with respect to the 13CO gas, about one third of the 13CO velocity dispersion along the same line of sight. Read More

From a survey of 729 cores based on JCMT/SCUBA data, we present an analysis of 17 candidate starless cores with masses that exceed their stable Jeans masses. We re-examine the classification of these super-Jeans cores using Spitzer maps and find that 3 are re-classified as protostellar, 11 have ambiguous emission near the core positions, and 3 appear to be genuinely starless. We suggest the 3 starless and 11 undetermined super-Jeans cores represent excellent targets for future observational and computational study to understand the evolution of dense cores and the process of star formation. Read More

We present results from the earliest observations of DEBRIS, a Herschel Key Programme to conduct a volume- and flux-limited survey for debris discs in A-type through M-type stars. PACS images (from chop/nod or scan-mode observations) at 100 and 160 micron are presented toward two A-type stars and one F-type star: beta Leo, beta UMa and eta Corvi. All three stars are known disc hosts. Read More

In this paper we present the results of a high resolution (5") CARMA and SZA survey of the 3mm continuum emission from 11 of the brightest (at 1.1mm) starless cores in the Perseus molecular cloud. We detect 2 of the 11 cores, both of which are composed of single structures, and the median 3 sigma upper limit for the non-detections is 0. Read More

We investigate 35 pre-stellar cores and 36 proto-stellar cores in the Perseus molecular cloud. We find a very tight correlation between the physical parameters describing the N2H+ and NH3 gas. Both the velocity centroids and the line widths of N2H+ and NH3 correlate much better than either species correlates with CO, as expected if the nitrogen-bearing species are probing primarily the dense core gas where the CO has been depleted. Read More

We analyze a suite of thin sheet magnetohydrodynamical simulations based on the formulation of Basu, Ciolek, Dapp & Wurster. These simulations allow us to examine the observational consequences to a star-forming region of varying the input level of turbulence (between thermal and a Mach number of 4) and the initial magnetic field strength corresponding to a range of mass to flux ratios between subcritical (mu_0=0.5) and supercritical (mu_0=10). Read More

In this paper we analyze nine SCUBA cores in Ophiuchus using the second-lowest rotational transitions of four molecular species (12CO, 13CO, C18O, and C17O) to search for clues to the evolutionary state and star-formation activity within each core. Specifically, we look for evidence of outflows, infall, and CO depletion. The line wings in the CO spectra are used to detect outflows, spectral asymmetries in 13CO are used to determine infall characteristics, and a comparison of the dust emission (from SCUBA observations) and gas emission (from C18O) is used to determine the fractional CO freeze-out. Read More

We present a census of the population of deeply embedded young stellar objects (YSOs) in the Ophiuchus molecular cloud complex based on a combination of Spitzer Space Telescope mid-infrared data from the "Cores to Disks" (c2d) legacy team and JCMT/SCUBA submillimeter maps from the COMPLETE team. We have applied a method developed for identifying embedded protostars in Perseus to these datasets and in this way construct a relatively unbiased sample of 27 candidate embedded protostars with envelopes more massive than our sensitivity limit (about 0.1 M_sun). Read More

We present the SCUBA Legacy Catalogues, two comprehensive sets of continuum maps (and catalogues) using data at 850 microns and 450 microns of the various astronomical objects obtained with the Submillimetre Common User Bolometer Array (SCUBA). The Fundamental Map Dataset contains data only where superior atmospheric opacity calibration data were available. The Extended Map Dataset is comprised of data regardless of the quality of the opacity calibration. Read More

We survey the kinematics of over one hundred and fifty candidate (and potentially star-forming) dense cores in the Perseus molecular cloud with pointed N2H+(1-0) and simultaneous C18O(2-1) observations. Our detection rate of N2H+ is 62%, rising to 84% for JCMT SCUBA-selected targets. In agreement with previous observations, we find that the dense N2H+ targets tend to display nearly thermal linewidths, particularly those which appear to be starless (using Spitzer data), indicating turbulent support on the small scales of molecular clouds is minimal. Read More

We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Read More

2006Oct
Affiliations: 1Harvard-Smithsonian Center for Astrophysics, 2Herzberg Institute of Astrophysics, 3University of Victoria, 4Harvard-Smithsonian Center for Astrophysics
Category: Astrophysics

We present a census of the population of deeply embedded young stellar objects (YSOs) in the Perseus molecular cloud complex based on a combination of Spitzer Space Telescope mid-IR data from the c2d legacy team and JCMT/SCUBA submillimeter maps from the COMPLETE team. The mid-IR sources detected at 24 micron and having [3.6]-[4. Read More

We present results from a 2300 arcmin^2 survey of the Orion A molecular cloud at 450 and 850 micron using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. The region mapped lies directly south of the OMC1 cloud core and includes OMC4, OMC5, HH1/2, HH34, and L1641N. We identify 71 independent clumps in the 850 micron map and compute size, flux, and degree of central concentration in each. Read More

We present an overview of data available for the Ophiuchus and Perseus molecular clouds from ``Phase I'' of the COMPLETE Survey of Star-Forming Regions. This survey provides a range of data complementary to the Spitzer Legacy Program ``From Molecular Cores to Planet Forming Disks.'' Phase I includes: Extinction maps derived from 2MASS near-infrared data using the NICER algorithm; extinction and temperature maps derived from IRAS 60 and 100um emission; HI maps of atomic gas; 12CO and 13CO maps of molecular gas; and submillimetre continuum images of emission from dust in dense cores. Read More

We present an analysis of ~3.5 square degrees of submillimetre continuum and extinction data of the Perseus molecular cloud. We identify 58 clumps in the submillimetre map and we identify 39 structures (`cores') and 11 associations of structures (`super cores') in the extinction map. Read More

We present results from a survey of a 1300 arcmin^2 region of the Orion B South molecular cloud, including NGC 2024, NGC 2023, and the Horsehead Nebula (B33), obtained using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. Submillimeter continuum observations at 450 microns and 850 microns are discussed. Using an automated algorithm, 57 discrete emission features (``clumps'') are identified in the 850 micron map. Read More

2005Dec
Affiliations: 1National Research Council of Canada, 2National Research Council of Canada, 3Center for Astrophysics and Space Astronomy, University of Colorado, 4Joint Astronomy Centre
Category: Astrophysics

The L1551 molecular cloud contains two small clusters of Class 0 and I protostars, as well as a halo of more evolved Class II and III YSOs, indicating a current and at least one past burst of star formation. We present here new, sensitive maps of 850 and 450 um dust emission covering most of the L1551 cloud, new CO J=2-1 data of the molecular cloud, and a new, deep, optical image of [SII] emission. No new Class 0/I YSOs were detected. Read More

We discuss the effects of an enhanced interstellar radiation field (ISRF) on the observables of protostellar cores in the Orion cloud region. Dust radiative transfer is used to constrain the envelope physical structure by reproducing SCUBA 850 micron emission. Previously reported 13CO, C17O and H2CO line observations are reproduced through detailed Monte Carlo line radiative transfer models. Read More

2004Oct
Affiliations: 1NRC Herzberg Institute of Astrophysics, 2NRC Herzberg Institute of Astrophysics, 3NRC Herzberg Institute of Astrophysics, 4NRC Herzberg Institute of Astrophysics
Category: Astrophysics

The G11.11-0.12 infrared-dark cloud has a filamentary appearance, both in extinction against the diffuse infrared emission of the Galactic plane and in emission at 850 microns. Read More

We have observed continuum emission at lambda = 850 microns over ~4 square degrees of the Ophiuchus star-forming cloud using SCUBA on the JCMT, producing a submillimetre continuum map twenty times larger than previous Ophiuchus surveys. Our sensitivity is 40 mJ/beam, a factor of ~2 less sensitive than earlier maps. Using an automated identification algorithm, we detect 100 candidate objects. Read More

2004Feb
Affiliations: 1University of Victoria, 2University of Victoria, 3Herzberg Institute of Astrophysics, 4CITA, Toronto
Category: Astrophysics

We examine the ability of photoevaporative disk winds to explain the low-velocity components observed in the forbidden line spectra of low-mass T Tauri stars. Using the analytic model of Shu, Johnstone, & Hollenbach (1993) and Hollenbach et al. (1994) as a basis, we examine the characteristics of photoevaporative outflows with hydrodynamic simulations. Read More

Cornerstone molecules (CO, H_2CO, CH_3OH, HCN, HNC, CN, CS, SO) were observed toward seven sub-millimeter bright sources in the Orion molecular cloud in order to quantify the range of conditions for which individual molecular line tracers provide physical and chemical information. Five of the sources observed were protostellar, ranging in energetics from 1 - 500L_sun, while the other two sources were located at a shock front and within a photodissociation region (PDR). Statistical equilibrium calculations were used to deduce from the measured line strengths the physical conditions within each source and the abundance of each molecule. Read More

2003Jul
Affiliations: 1Steward Observatory, 2Herzberg Institute of Astrophysics, 3University of Toronto, 4University of Michigan, 5Steward Observatory
Category: Astrophysics

We report detection of continuum emission at 850 and 450 micron from disks around four Classical T Tauri stars in the MBM 12 (L1457) young association. Using a simple model we infer masses of 0.0014-0. Read More