David B. Geohegan

David B. Geohegan
Are you David B. Geohegan?

Claim your profile, edit publications, add additional information:

Contact Details

David B. Geohegan

Pubs By Year

Pub Categories

Physics - Materials Science (5)
Physics - Optics (1)
Physics - Chemical Physics (1)

Publications Authored By David B. Geohegan

Atomically thin circuits have recently been explored for applications in next-generation electronics and optoelectronics and have been demonstrated with two-dimensional lateral heterojunctions. In order to form true 2D circuitry from a single material, electronic properties must be spatially tunable. Here, we report tunable transport behavior which was introduced into single layer tungsten diselenide and tungsten disulfide by focused He$^+$ irradiation. Read More

As a new two-dimensional layered material, black phosphorus (BP) is a promising material for nanoelectronics and nano-optoelectronics. We use Raman spectroscopy and first-principles theory to report our findings related to low-frequency (LF) interlayer breathing modes (<100 cm-1) in few-layer BP for the first time. The breathing modes are assigned to Ag symmetry by the laser polarization dependence study and group theory analysis. Read More

Semiconductor heterostructures provide a powerful platform for the engineering of excitons. Here we report the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and nonepitaxial heterostructures. Read More

As the silicon industry continues to push the limits of device dimensions, tools such as Raman spectroscopy are ideal to analyze and characterize the doped silicon channels. The effect of inter-valence band transitions on the zone center optical phonon in heavily p-type doped silicon is studied by Raman spectroscopy for a wide range of excitation wavelengths extending from the red (632.8 nm) into the ultra-violet (325 nm). Read More

The structure and vibrational spectrum of Gd3N@C80 is studied through Raman and inelastic electron tunneling spectroscopy (IETS) as well as density functional theory (DFT) and universal force field (UFF) calculations. Hindered rotations, shown by both theory and experiment, indicate the formation of a Gd3N-C80 bond which reduces the ideal icosahedral symmetry of the C80 cage. The vibrational modes involving the movement of the encapsulated species are a fingerprint of the interaction between the fullerene cage and the core complex. Read More