Daniele S. Alves - Editor

Daniele S. Alves
Are you Daniele S. Alves?

Claim your profile, edit publications, add additional information:

Contact Details

Daniele S. Alves
United States

Pubs By Year

Pub Categories

High Energy Physics - Phenomenology (17)
High Energy Physics - Experiment (7)
General Relativity and Quantum Cosmology (4)
Cosmology and Nongalactic Astrophysics (2)
Astrophysics (1)
Astrophysics of Galaxies (1)

Publications Authored By Daniele S. Alves

New scalars from an extended Higgs sector could have weak scale masses and still have escaped detection. In a Type I Two Higgs Doublet Model, for instance, even the charged Higgs can be lighter than the top quark. Because electroweak production of these scalars is modest, the greatest opportunity for their detection might come from rare top decays. Read More

Models with Dirac gauginos provide appealing scenarios for physics beyond the standard model. They have smaller radiative corrections to the Higgs mass, a suppression of certain SUSY production processes, and ameliorated flavor constraints. Unfortunately, they also generally have tachyons, the solutions to which typically spoil these positive features. Read More

Models of supersymmetry with Dirac gauginos provide an attractive scenario for physics beyond the standard model. The "supersoft" radiative corrections and suppressed SUSY production at colliders provide for more natural theories and an understanding of why no new states have been seen. Unfortunately, these models are handicapped by a tachyon which is naturally present in existing models of Dirac gauginos. Read More

The energy dependence of the electroweak gauge couplings has not been measured above the weak scale. We propose that percent-level measurements of the energy dependence of $\alpha_{1,2}$ can be performed now at the LHC and at future higher energy hadron colliders. These measurements can be used to set limits on new particles with electroweak quantum numbers without relying on any assumptions about their decay properties. Read More

Searches for supersymmetry (SUSY) often rely on a combination of hard physics objects (jets, leptons) along with large missing transverse energy to separate New Physics from Standard Model hard processes. We consider a class of ``double-invisible'' SUSY scenarios: where squarks, stops and sbottoms have a three-body decay into two (rather than one) invisible final-state particles. This occurs naturally when the LSP carries an additional conserved quantum number under which other superpartners are not charged. Read More

In models where an additional SU(2)-doublet that does not have couplings to fermions participates in electroweak symmetry breaking, the properties of the Higgs boson are changed. At tree level, in the neighborhood of the SM-like range of parameter space, it is natural to have the coupling to vectors, cV, approximately constant, while the coupling to fermions, cf, is suppressed. This leads to enhanced VBF signals of gamma gamma while keeping other signals of Higgses approximately constant (such as WW* and ZZ*), and suppressing higgs to tau tau. Read More

Within the context of supersymmetric theories, explaining a 125 GeV Higgs motivates a consideration of a broader range of models. We consider a simple addition to the MSSM of a "Sister Higgs" ($\Sigma_d$), a Higgs field that participates in electroweak symmetry breaking but does not give any direct masses to Standard Model matter fields. While a relatively minor addition, the phenomenological implications can be important. Read More

LHC experiments have placed strong bounds on the production of supersymmetric colored particles (squarks and gluinos), under the assumption that all flavors of squarks are nearly degenerate. However, the current experimental constraints on stop squarks are much weaker, due to the smaller production cross section and difficult backgrounds. While light stops are motivated by naturalness arguments, it has been suggested that such particles become nearly impossible to detect near the limit where their mass is degenerate with the sum of the masses of their decay products. Read More

We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. Read More

Recent evidence from the LHC for the Higgs boson with mass between 142 GeV < m_h < 147GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 microns to 10 years range, are its imminent smoking gun signature. Read More

Authors: Daniele Alves1, Nima Arkani-Hamed2, Sanjay Arora3, Yang Bai4, Matthew Baumgart5, Joshua Berger6, Matthew Buckley7, Bart Butler8, Spencer Chang9, Hsin-Chia Cheng10, Clifford Cheung11, R. Sekhar Chivukula12, Won Sang Cho13, Randy Cotta14, Mariarosaria D'Alfonso15, Sonia El Hedri16, Rouven Essig17, Jared A. Evans18, Liam Fitzpatrick19, Patrick Fox20, Roberto Franceschini21, Ayres Freitas22, James S. Gainer23, Yuri Gershtein24, Richard Gray25, Thomas Gregoire26, Ben Gripaios27, Jack Gunion28, Tao Han29, Andy Haas30, Per Hansson31, JoAnne Hewett32, Dmitry Hits33, Jay Hubisz34, Eder Izaguirre35, Jared Kaplan36, Emanuel Katz37, Can Kilic38, Hyung-Do Kim39, Ryuichiro Kitano40, Sue Ann Koay41, Pyungwon Ko42, David Krohn43, Eric Kuflik44, Ian Lewis45, Mariangela Lisanti46, Tao Liu47, Zhen Liu48, Ran Lu49, Markus Luty50, Patrick Meade51, David Morrissey52, Stephen Mrenna53, Mihoko Nojiri54, Takemichi Okui55, Sanjay Padhi56, Michele Papucci57, Michael Park58, Myeonghun Park59, Maxim Perelstein60, Michael Peskin61, Daniel Phalen62, Keith Rehermann63, Vikram Rentala64, Tuhin Roy65, Joshua T. Ruderman66, Veronica Sanz67, Martin Schmaltz68, Stephen Schnetzer69, Philip Schuster70, Pedro Schwaller71, Matthew D. Schwartz72, Ariel Schwartzman73, Jing Shao74, Jessie Shelton75, David Shih76, Jing Shu77, Daniel Silverstein78, Elizabeth Simmons79, Sunil Somalwar80, Michael Spannowsky81, Christian Spethmann82, Matthew Strassler83, Shufang Su84, Tim Tait85, Brooks Thomas86, Scott Thomas87, Natalia Toro88, Tomer Volansky89, Jay Wacker90, Wolfgang Waltenberger, Itay Yavin, Felix Yu, Yue Zhao, Kathryn Zurek
Affiliations: 1Editor, 2Editor, 3Editor, 4Editor, 5Editor, 6Editor, 7Editor, 8Editor, 9Editor, 10Editor, 11Editor, 12Editor, 13Editor, 14Editor, 15Editor, 16Editor, 17Editor, 18Editor, 19Editor, 20Editor, 21Editor, 22Editor, 23Editor, 24Editor, 25Editor, 26Editor, 27Editor, 28Editor, 29Editor, 30Editor, 31Editor, 32Editor, 33Editor, 34Editor, 35Editor, 36Editor, 37Editor, 38Editor, 39Editor, 40Editor, 41Editor, 42Editor, 43Editor, 44Editor, 45Editor, 46Editor, 47Editor, 48Editor, 49Editor, 50Editor, 51Editor, 52Editor, 53Editor, 54Editor, 55Editor, 56Editor, 57Editor, 58Editor, 59Editor, 60Editor, 61Editor, 62Editor, 63Editor, 64Editor, 65Editor, 66Editor, 67Editor, 68Editor, 69Editor, 70Editor, 71Editor, 72Editor, 73Editor, 74Editor, 75Editor, 76Editor, 77Editor, 78Editor, 79Editor, 80Editor, 81Editor, 82Editor, 83Editor, 84Editor, 85Editor, 86Editor, 87Editor, 88Editor, 89Editor, 90Editor

This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Read More

This work explores the potential reach of the 7 TeV LHC to new colored states in the context of simplified models and addresses the issue of which search regions are necessary to cover an extensive set of event topologies and kinematic regimes. This article demonstrates that if searches are designed to focus on specific regions of phase space, then new physics may be missed if it lies in unexpected corners. Simple multiregion search strategies can be designed to cover all of kinematic possibilities. Read More

The first search for supersymmetry from ATLAS with 70/nb of integrated luminosity extends the Tevatron' s reach for colored particles that decay into jets plus missing transverse energy. For gluinos that decay directly or through a one step cascade into the LSP and two jets, the mass range m_g < 205 GeV is disfavored by the ATLAS searches, regardless of the mass of the LSP. In some cases the coverage extends up to m_g ~ 295 GeV, already surpassing the Tevatron's reach for compressed supersymmetry spectra. Read More

The XENON100 and CRESST experiments will directly test the inelastic dark matter explanation for DAMA's 8.9? sigma anomaly. This article discusses how predictions for direct detection experiments depend on uncertainties in quenching factor measurements, the dark matter interaction with the Standard Model and the halo velocity distribution. Read More

Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. Read More

In light of recent experimental proposals to measure the free fall acceleration of antihydrogen in the earth's gravitational field, we investigate the bounds that existing experiments place on any asymmetry between the free fall of matter and antimatter. We conclude that existing experiments constrain any such asymmetry to be less than about 10^-7. First we consider contributions to the inertial masses of atoms that encode the presence of antimatter and use precision Eotvos experiments to establish the level at which they satisfy the equivalence principle. Read More

Peaking consistently in June for nearly eleven years, the annual modulation signal reported by DAMA/NaI and DAMA/LIBRA offers strong evidence for the identity of dark matter. DAMA's signal strongly suggest that dark matter inelastically scatters into an excited state split by O(100 keV). We propose that DAMA is observing hyperfine transitions of a composite dark matter particle. Read More

We consider the Abelian model of a complex scalar field coupled to a gauge field within the framework of General Relativity and search for cosmological solutions. For this purpose we assume a homogeneous, isotropic and uncharged Universe and a homogeneous scalar field. This model may be inserted in several contexts in which the scalar field might act as inflaton or quintessence, whereas the gauge field might play the role of radiation or dark matter, for instance. Read More

By establishing that Palatini formulation of $L(R)$ gravity is equivalent to $\omega=-3/2$ Brans-Dicke theory, we show that energy-momentum tensor is covariantly conserved in this type of modified gravity theory. Read More

By applying the Palatini approach to the 1/R-gravity model it is possible to explain the present accelerated expansion of the Universe. Investigation of the late Universe limiting case shows that: (i) due to the curvature effects the energy-momentum tensor of the matter field is not covariantly conserved; (ii) however, it is possible to reinterpret the curvature corrections as sources of the gravitational field, by defining a modified energy-momentum tensor; (iii) with the adoption of this modified energy-momentum tensor the Einstein's field equations are recovered with two main modifications: the first one is the weakening of the gravitational effects of matter whereas the second is the emergence of an effective varying "cosmological constant"; (iv) there is a transition in the evolution of the cosmic scale factor from a power-law scaling $a\propto t^{11/18}$ to an asymptotically exponential scaling $a\propto \exp(t)$; (v) the energy density of the matter field scales as $\rho_m\propto (1/a)^{36/11}$; (vi) the present age of the Universe and the decelerated-accelerated transition redshift are smaller than the corresponding ones in the $\Lambda$CDM model. Read More

A model of the Universe as a mixture of a scalar (inflaton or rolling tachyon from the string theory) and a matter field (classical particles) is analyzed. The particles are created at the expense of the gravitational energy through an irreversible process whereas the scalar field is supposed to interact only with itself and to be minimally coupled with the gravitational field. The irreversible processes of particle creation are related to the non-equilibrium pressure within the framework of the extended (causal or second-order) thermodynamic theory. Read More