# Daniela Sforza

## Publications Authored By Daniela Sforza

In this paper we will consider oscillations of square viscoelastic membranes by adding to the wave equation another term, which takes into account the memory. To this end, we will study a class of integrodifferential equations in square domains. By using accurate estimates of the spectral properties of the integrodifferential operator, we will prove an inverse observability inequality. Read More

We solve the reachability problem for a coupled wave-wave system with an integro-differential term. The control functions act on one side of the boundary. The estimates on the time is given in terms of the parameters of the problem and they are explicitly computed thanks to Ingham type results. Read More

We consider an anisotropic hyperbolic equation with memory term: $$ \partial_t^2 u(x,t) = \sum_{i,j=1}^n \partial_i(a_{ij}(x)\partial_ju) + \int^t_0 \sum_{| \alpha| \le 2} b_{\alpha}(x,t,\eta)\partial_x^{\alpha}u(x,\eta) d\eta + F(x,t) $$ for $x \in \Omega$ and $t\in (0,T)$ or $\in (-T,T)$, which is a model equation for viscoelasticity. First we establish a Carleman estimate for this equation with overdetermining boundary data on a suitable lateral subboundary $\Gamma \times (-T,T)$. Second we apply the Carleman estimate to establish a both-sided estimate of $| u(\cdot,0)|_{H^3(\Omega)}$ by $\partial_{\nu}u|_{\Gamma\times (0,T)}$ under the assumption that $\partial_tu(\cdot,0) = 0$ and $T>0$ is sufficiently large, $\Gamma \subset \partial\Omega$ satisfies some geometric condition. Read More

We investigate control problems for wave-Petrovsky coupled systems in the presence of memory terms. By writing the solutions as Fourier series, we are able to prove Ingham type estimates, and hence reachability results. Our findings have applications in viscoelasticity theory and linear acoustic theory. Read More