Daniel Stern - JPL

Daniel Stern
Are you Daniel Stern?

Claim your profile, edit publications, add additional information:

Contact Details

Daniel Stern

Pubs By Year

External Links

Pub Categories

Astrophysics of Galaxies (28)
High Energy Astrophysical Phenomena (26)
Cosmology and Nongalactic Astrophysics (5)
Solar and Stellar Astrophysics (4)
Mathematics - Differential Geometry (2)
Instrumentation and Methods for Astrophysics (2)
Mathematics - Analysis of PDEs (1)

Publications Authored By Daniel Stern

The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Read More

We establish a new estimate for the Ginzburg-Landau energies $E_{\epsilon}(u)=\int_M\frac{1}{2}|du|^2+\frac{1}{4\epsilon^2}(1-|u|^2)^2$ of complex-valued maps $u$ on a compact, oriented manifold $M$ with $b_1(M)\neq 0$, obtained by decomposing the harmonic component $h_u$ of the one-form $ju:=u^1du^2-u^2du^1$ into an integral and fractional part. We employ this estimate to show that, for critical points $u_{\epsilon}$ of $E_{\epsilon}$ arising from the two-parameter min-max construction considered by the author in previous work, a nontrivial portion of the energy must concentrate on a stationary, rectifiable $(n-2)$-varifold as $\epsilon\to 0$. Read More

We present results from a NuSTAR observation of the Crab made at a large off-axis angle of 1.5\degree. At these angles X-rays do not pass through the optics, but rather illuminate the detectors directly due to incomplete baffling. Read More

Hot, Dust-Obscured Galaxies, or "Hot DOGs", are a rare, dusty, hyperluminous galaxy population discovered by the WISE mission. Predominantly at redshifts 2-3, they include the most luminous known galaxies in the universe. Their high luminosities likely come from accretion onto highly obscured super massive black holes (SMBHs). Read More

We present observations of the occulted active region AR12222 during the third {\em NuSTAR} solar campaign on 2014 December 11, with concurrent {\em SDO/}AIA and {\em FOXSI-2} sounding rocket observations. The active region produced a medium size solar flare one day before the observations, at $\sim18$UT on 2014 December 10, with the post-flare loops still visible at the time of {\em NuSTAR} observations. The time evolution of the source emission in the {\em SDO/}AIA $335\textrm{\AA}$ channel reveals the characteristics of an extreme-ultraviolet late phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. Read More

Several recent studies have reported different intrinsic correlations between the AGN mid-IR luminosity ($L_{MIR}$) and the rest-frame 2-10 keV luminosity ($L_{X}$) for luminous quasars. To understand the origin of the difference in the observed $L_{X}-L_{MIR}$ relations, we study a sample of 3,247 spectroscopically confirmed type 1 AGNs collected from Bo\"{o}tes, XMM-COSMOS, XMM-XXL-North, and the SDSS quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed $L_{X}-L_{MIR}$ relations, including the inclusion of X-ray non-detected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. Read More

The time domain is the emerging forefront of astronomical research with new facilities and instruments providing unprecedented amounts of data on the temporal behavior of astrophysical populations. Dealing with the size and complexity of this requires new techniques and methodologies. Quasars are an ideal work set for developing and applying these: they vary in a detectable but not easily quantifiable manner whose physical origins are poorly understood. Read More

We use min-max techniques to produce nontrivial solutions $u_{\epsilon}:M\to \mathbb{R}^2$ of the Ginzburg-Landau equation $\Delta u_{\epsilon}+\frac{1}{\epsilon^2}(1-|u_{\epsilon}|^2)u_{\epsilon}=0$ on a given compact Riemannian manifold, whose energy grows like $|\log\epsilon|$ as $\epsilon\to 0$. When the degree one cohomology $H^1_{dR}(M)=0$, we show that the energy of these solutions concentrates on a nontrivial stationary, rectifiable $(n-2)$-varifold $V$. Read More

We explore 7.5 billion years of evolution in the star formation activity of massive ($M_{\star}>10^{10.1}\,M_{\odot}$) cluster galaxies using a sample of 25 clusters over $0. Read More

We investigate the observed relationship between black hole mass ($M_{\rm BH}$), bolometric luminosity ($L_{\rm bol}$), and Eddington ratio (${\lambda}_{\rm Edd}$) with optical emission line ratios ([NII] {\lambda}6583/H{\alpha}, [SII] {\lambda}{\lambda}6716,6731/H{\alpha}, [OI] {\lambda}6300/H{\alpha}, [OIII] {\lambda}5007/H{\beta}, [NeIII] {\lambda}3869/H{\beta}, and HeII {\lambda}4686/H{\beta}) of hard X-ray-selected AGN from the BAT AGN Spectroscopic Survey (BASS). We show that the [NII] {\lambda}6583/H{\alpha} ratio exhibits a significant correlation with ${\lambda}_{\rm Edd}$ ($R_{\rm Pear}$ = -0.44, $p$-value=$3\times10^{-13}$, {\sigma} = 0. Read More

$Context:$ Intermediate-Mass Black Holes (IMBHs) are thought to be the seeds of early Supermassive Black Holes (SMBHs). While $\gtrsim$100 IMBH and small SMBH candidates have been identified in recent years, few have been robustly confirmed to date, leaving their number density in considerable doubt. Placing firmer constraints both on the methods used to identify and confirm IMBHs/SMBHs, as well as characterizing the range of host environments that IMBHs/SMBHs likely inhabit is therefore of considerable interest and importance. Read More

Searching for active galactic nuclei (AGN) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early Universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ~18,000 nearby dwarf galaxies (M*< 3 x 10^9 Msun, $z<0. Read More

Using HST slitless grism data, we report the spectroscopic confirmation of two distant structures at $z \sim 2$ associated with powerful high-redshift radio-loud AGN. These rich structures, likely (forming) clusters, are among the most distant currently known and were identified on the basis of Spitzer/IRAC [3.6] - [4. Read More

M82 X-1 is one of the brightest ultraluminous X-ray sources (ULXs) known, which, assuming Eddington-limited accretion and other considerations, makes it one of the best intermediate-mass black hole (IMBH) candidates. However, the ULX may still be explained by super-Eddington accretion onto a stellar-remnant black hole. We present simultaneous NuSTAR, Chandra and Swift/XRT observations during the peak of a flaring episode with the aim of modeling the emission of M82 X-1 and yielding insights into its nature. Read More

We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ~0. Read More

We study the geometry of the AGN obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at $z=0.442$, using infrared data from Spitzer and Herschel, X-ray data from Nustar, Swift, Suzaku, and Chandra, and an optical spectrum from Palomar. The infrared data imply a total rest-frame 1-1000$\mu$m luminosity of $5. Read More

We present results from the the first campaign of dedicated solar observations undertaken by the \textit{Nuclear Spectroscopic Telescope ARray} ({\em NuSTAR}) hard X-ray telescope. Designed as an astrophysics mission, {\em NuSTAR} nonetheless has the capability of directly imaging the Sun at hard X-ray energies ($>$3~keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where \textit{NuSTAR} will make major improvements on existing solar measurements. Read More

Recently, unresolved hard (20-40 keV) X-ray emission has been discovered within the central 10 pc of the Galaxy, possibly indicating a large population of intermediate polars (IPs). Chandra and XMM-Newton measurements in the surrounding ~50 pc imply a much lighter population of IPs with $\langle M_{\rm WD} \rangle \approx 0.5 M_\odot$. Read More

We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and well described by a black body with $kT=$ 1. Read More

We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive ($\gtrsim10^{14}\,\rm{M_{\odot}}$) galaxy clusters at $1Read More

We use the AllWISE Data Release to continue our search for WISE-detected motions. In this paper, we publish another 27,846 motion objects, bringing the total number to 48,000 when objects found during our original AllWISE motion survey are included. We use this list, along with the lists of confirmed WISE-based motion objects from the recent papers by Luhman and by Schneider et al. Read More

Affiliations: 1Georgia College, 2SSL-UC Berkeley, 3SSL-UC Berkeley, 4IKI Moscow, 5JPL-Caltech, 6Columbia University, 7ESO, 8SSL-UC Berkeley, 9DTU Space, 10SSL-UC Berkeley, 11Columbia University, 12Caltech, 13NASA-GSFC

The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1. Read More

We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between September and October 2012 by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. Read More

We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its July 2014 outburst. The spectrum is soft with strong evidence for a broad Fe K\alpha line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner radius of 15+/-3 R_G. Read More

We present a multi-epoch X-ray spectral analysis of the Seyfert 1 galaxy Fairall 9. Our analysis shows that Fairall 9 displays unique spectral variability in that its ratio residuals to a simple absorbed power law in the 0.5-10 keV band remain constant with time in spite of large variations in flux. Read More

Some reddened quasars appear to be transitional objects in the merger-induced black hole growth/galaxy evolution paradigm, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS selected red quasars F2M 0830+3759 and F2M 1227+3214. Read More

We report the discovery of significant mass/light offsets in the strong gravitational lensing system SDSS\,J1011$+$0143. We use the high-resolution \textsl{Hubble Space Telescope} (\textsl{HST}) F555W- and F814W-band imaging and Sloan Digital Sky Survey (SDSS) spectroscopy of this system, which consists of a close galaxy pair with a projected separation of $\approx 4.2$ kpc at $z_{\rm lens} \sim 0. Read More

We present a hard X-ray NuSTAR observation of PSR J0437-4715, the nearest millisecond pulsar. The known pulsations at the apparent pulse period ~5.76 ms are detected at energies up to 20 keV. Read More

Capitalizing on the all-sky coverage of {\it WISE}, and the 35\% and 50\% sky coverage from SDSS and Pan-STARRS, respectively, we explore the efficacy of $m_{R}$ (optical) - $m_{3.4 \mu m}$ (mid-infrared), hereafter $R-W1$, as a color diagnostic to identify obscured supermassive black hole accretion in wide-area X-ray surveys. We use the $\sim$16. Read More

The optical light curve of the quasar PG 1302-102 at $z = 0.278$ shows a strong, smooth 5.2 yr periodic signal, detectable over a period of $\sim 20$ yr. Read More

Affiliations: 1Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 2Jet Propulsion Laboratory, 3California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 4Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 5Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 6Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 7Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 8Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 9Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 10Anton Pannekoek Institute for Astronomy, 11California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 12California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 13Jet Propulsion Laboratory, 14Jet Propulsion Laboratory, 15Rice University, Department of Physics and Astronomy, 16Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 17Georgia College, Department of Chemistry, Physics, and Astronomy, 18Jet Propulsion Laboratory, 19Jet Propulsion Laboratory, 20North-West University, Centre for Space Research, 21Technical University of Denmark, DTU Space, National Space Institute, 22Yale University, Department of Astronomy, 23Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 24University of Virginia, Department of Astronomy, 25MPI for Extraterrestrial Physics Garching, 26Durham University, Centre for Extragalactic Astronomy, Department of Physics, 27Jet Propulsion Laboratory, 28North Carolina State University, Department of Physics, 29Jet Propulsion Laboratory, 30Cambridge, Institute of Astronomy, UK, 31Penn State University, Department of Astronomy and Astrophysics, 32Jet Propulsion Laboratory, 33University of California, Berkeley, Department of Physics, 34ASI Science Data Center, Italy, 35California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 36Cambridge, Institute of Astronomy, UK, 37Jet Propulsion Laboratory, 38Purdue University, Department of Physics and Astronomy, 39Texas Tech University, Physics Department, 40Nagoya University, Center for Experimental Studies, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, 41University of Maryland, Physics Department, 42RIKEN, 43Univ. of Michigan in Ann Arbor, Astronomy Dept, 44Harvard-Smithsonian Center for Astrophysics, 45Istituto di Astrofisica e Planetologia Spaziali, INAF, 46Department of Astronomy/Steward Observatory, 47Lawrence Livermore National Laboratory, 48Jet Propulsion Laboratory, 49Department of Astronomy/Steward Observatory, 50NASA Goddard Space Flight Center, 51Tohoku University, Astronomical Institute, 52NASA Goddard Space Flight Center

This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter, radiation and the very fabric of spacetime under the extreme conditions close to the event horizons of black holes, as well as in and around magnetars and neutron stars. Read More

We explore the relationship between the spectral shape of the Ly{\alpha} emission and the UV morphology of the host galaxy using a sample of 304 Ly{\alpha}-emitting BV i-dropouts at 3 < z < 7 in the GOODS and COSMOS fields. Using our extensive reservoir of high-quality Keck DEIMOS spectra combined with HST WFC3 data, we measure the Ly{\alpha} line asymmetries for individual galaxies and compare them to axial ratios measured from observed J- and H-band (restframe UV) images. We find that the Ly{\alpha} skewness exhibits a large scatter at small elongation (a/b < 2), and this scatter decreases as axial ratio increases. Read More

We present a NuSTAR, Chandra, and XMM--Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Read More

We present a pilot study of the z=2.923 radio galaxy MRC0943-242, where we for the first time combine information from ALMA and MUSE data cubes. Even with modest integration times, we disentangle an AGN and a starburst dominated set of components. Read More

We present the results from a joint Suzaku/NuSTAR broad-band spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-off ($E_\text{cut}=117_{-14}^{+18}$ keV), and to place constraints on the Comptonization parameters of the primary continuum for the first time. Read More

We investigate the relationship between X-ray and optical line emission in 340 nearby AGN selected above 10 keV using Swift BAT. We find a weak correlation between the extinction corrected [O III] and hard X-ray luminosity (14-195 keV) with a [OIII] large scatter (R_Pear = 0.64, sigma = 0. Read More

Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. Read More

The Decadal IRAC Bootes Survey is a mid-IR variability survey of the ~9 sq. deg. of the NDWFS Bootes Field and extends the time baseline of its predecessor, the Spitzer Deep, Wide-Field Survey (SDWFS), from 4 to 10 years. Read More

We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at $z=1.19$, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev-Zel'dovich (SZ) decrement at 13. Read More

We report on a multiwavelength observational campaign of the black hole X-ray binary Swift J1753.5-0127 that consists of an ESO/X-shooter spectrum supported by contemporaneous Swift/XRT+UVOT and ATCA data. ISM absorption lines in the X-shooter spectrum allows us to determine E(B-V)=0. Read More

We report on Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of the young rotation-powered radio pulsar PSR B1509$-$58 in the supernova remnant MSH 15$-$52. We confirm the previously reported curvature in the hard X-ray spectrum, showing that a log parabolic model provides a statistically superior fit to the spectrum compared with the standard power law. The log parabolic model describes the NuSTAR data, as well as previously published gamma-ray data obtained with COMPTEL and AGILE, all together spanning 3 keV through 500 MeV. Read More

Galactic Center (GC) molecular cloud Sgr B2 is the best manifestation of an X-ray reflection nebula (XRN) reprocessing a past giant outburst from the supermassive black hole Sgr A*. Alternatively, Sgr B2 could be illuminated by low-energy cosmic ray electrons (LECRe) or protons (LECRp). In 2013, NuSTAR for the first time resolved Sgr B2 hard X-ray emission on sub-arcminute scales. Read More