Daniel Kocevski

Daniel Kocevski
Are you Daniel Kocevski?

Claim your profile, edit publications, add additional information:

Contact Details

Daniel Kocevski

Pubs By Year

Pub Categories

Astrophysics (9)
High Energy Astrophysical Phenomena (6)
Cosmology and Nongalactic Astrophysics (4)
Astrophysics of Galaxies (2)
Instrumentation and Methods for Astrophysics (2)

Publications Authored By Daniel Kocevski

Gamma-ray bursts (GRBs) by virtue of their high luminosities can be detected up to very high redshifts and therefore can be excellent probes of the early universe. This task is hampered by the fact that most of their characteristics have a broad range so that we first need to obtain an accurate description of the distribution of these characteristics, and specially, their cosmological evolution. We use a sample of about 200 \swift long GRBs with known redshift to determine the luminosity and formation rate evolutions and the general shape of the luminosity function. Read More

Recent observations by the $Fermi$ Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some Gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal $\gamma$-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, $E_{\rm p}$ and $kT$, of these two components are correlated via the relation $E_{\rm p} \propto T^{\alpha}$ which varies from GRB to GRB. Read More

Spectra of broad-lined Type Ic supernovae (SN Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities (~0.1c). We study the host galaxies of a sample of 245 low-redshift (z<0. Read More

I investigate the origin of the observed correlation between a GRB's nuFnu spectral peak Epk and its isotropic equivalent energy Eiso through the use of a population synthesis code to model the prompt gamma-ray emission from GRBs. By using prescriptions for the distribution of prompt spectral parameters as well as the population's luminosity function and co-moving rate density, I generate a simulated population of GRBs and examine how bursts of varying spectral properties and redshift would appear to a gamma-ray detector here on Earth. I find that a strong observed correlation can be produced between the source frame Epk and Eiso for the detected population despite the existence of only a weak and broad correlation in the original simulated population. Read More

We examine the effects of time dilation on the temporal profiles of gamma-ray burst (GRB) pulses. By using prescriptions for the shape and evolution of prompt gamma-ray spectra, we can generate a simulated population of single pulsed GRBs at a variety of redshifts and observe how their light curves would appear to a gamma-ray detector here on Earth. We find that the observer frame duration of individual pulses does not increase as a function of redshift as one would expect from the cosmological expansion of a Friedman-Lemaitre-Robertson-Walker Universe. Read More

We investigate the nature of the mass-metallicity (M-Z) relation for long gamma-ray burst (LGRB) host galaxies. Recent studies suggest that the M-Z relation for local LGRB host galaxies may be systematically offset towards lower metallicities relative to the M-Z relation defined by the general star forming galaxy (SDSS) population. The nature of this offset is consistent with suggestions that low metallicity environments may be required to produce high mass progenitors, although the detection of several GRBs in high-mass, high-metallicity galaxies challenges the notion of a strict metallicity cut-off for host galaxies that are capable of producing GRBs. Read More

We present results of an extensive observing campaign of the short duration, hard spectrum gamma-ray burst (GRB) 070724A, aimed at detecting the radioactively-powered emission that might follow from a binary merger or collapse involving compact objects. Our multi-band observations span the range in time over which this so-called Li-Paczynski mini-supernova could be active, beginning within 3 hours of the GRB trigger, and represent some of the deepest and most comprehensive searches for such emission. We find no evidence for such activity and place limits on the abundances and the lifetimes of the possible radioactive nuclides that could form in the rapid decompression of nuclear-density matter. Read More

We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. Read More

Several correlations among parameters derived from modelling the high-energy properties of GRBs have been reported. We show that well-known examples of these have common features indicative of strong contamination by selection effects. We focus here on the impact of detector threshold truncation on the spectral peak versus isotropic equivalent energy release ($E_{\rm pk}$-$E_{\rm iso}$) relation, extended to a large sample of 218 Swift and 56 HETE-2 GRBs with and without measured redshift. Read More

We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known redshift that were detected by the Swift spacecraft and monitored by the satellite's X-ray Telescope (XRT). Using the bolometric fluence values estimated in Butler et al. 2007b and the last XRT observation for each event, we set a lower limit the their collimation corrected energy Eg and find that a 68% of our sample are at high enough redshift and/or low enough fluence to accommodate a jet break occurring beyond the last XRT observation and still be consistent with the pre-Swift Eg distribution for long GRBs. Read More

We calculate durations and spectral paramaters for 218 Swift bursts detected by the BAT instrument between and including GRBs 041220 and 070509, including 77 events with measured redshifts. Incorporating prior knowledge into the spectral fits, we are able to measure the characteristic $\nu F_{\nu}$ spectral peak energy $E_{\rm pk,obs}$ and the isotropic equivalent energy $E_{\rm iso}$ (1--$10^4$ keV) for all events. This complete and rather extensive catalog, analyzed with a unified methodology, allows us to address the persistence and origin of high-energy correlations suggested in pre-Swift observations. Read More

The early, highly time-variable X-ray emission immediately following GRBs exhibits strong spectral variations that are unlike the temporally smoother emission which dominates after $t\sim 10^3$ s. The ratio of hard channel (1.3-10. Read More

We study the duration and variability of late time X-ray flares following gamma-ray bursts (GRBs) observed by the narrow field X-ray telescope (XRT) aboard the {\it Swift} spacecraft. These flares are thought to be indicative of late time activity by the central engine that powers the GRB and produced by means similar to those which produce the prompt emission. We use a non-parametric procedure to study the overall temporal properties of the flares and a structure function analysis to look for an evolution of the fundamental variability time-scale between the prompt and late time emission. Read More

We report simultaneous multicolor near-infrared (NIR) observations of the supernova associated with x-ray Flash 060218 during the first 16 days after the high energy event. We find that the light curve rises and peaks relatively fast compared to other SN Ic, with the characteristic broad NIR peak seen in all three bands. We find that the rise profile before the peak is largely independent of NIR wavelength, each band appearing to transition into a plateau phase around day 10--13. Read More

We show that the X-ray and $\gamma$-ray spectra of Swift GRBs and their afterglows are consistent with the emission characteristic of an expanding, relativistic fireball. The classical afterglow due to the impact of the fireball on the external medium is often not observed until one to several hours after the GRB. Focusing on GRBs 061121, 060614, and 060124, but generalizing to the full ($>$50 Msec XRT exposure) Swift sample up to and including GRB061210, we show that the early emission in $>$90% of early afterglows has a characteristic $\nu F_{\nu}$ spectral energy $E_{\rm peak}$ which likely evolves from the $\gamma$-rays through the soft X-ray band on timescales of $10^2-10^4$s after the GRB. Read More

It is now accepted that long duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. The standard "collapsar" model predicts that a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies every long-duration GRB. This association has been confirmed in observations of several nearby GRBs. Read More

We estimate the luminosity evolution and formation rate for over 900 GRBs by using redshift and luminosity data calculated by Band, Norris, $&$ Bonnell (2004) via the lag-luminosity correlation. By applying maximum likelihood techniques, we are able to infer the true distribution of the parent GRB population's luminosity function and density distributions in a way that accounts for detector selection effects. We find that after accounting for data truncation, there still exists a significant correlation between the average luminosity and redshift, indicating that distant GRBs are on average more luminous than nearby counterparts. Read More