Daniel Jacobs

Daniel Jacobs
Are you Daniel Jacobs?

Claim your profile, edit publications, add additional information:

Contact Details

Daniel Jacobs

Pubs By Year

Pub Categories

Cosmology and Nongalactic Astrophysics (25)
Instrumentation and Methods for Astrophysics (23)
Quantum Physics (2)
Physics - Physics and Society (1)

Publications Authored By Daniel Jacobs

The experimental efforts to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR) are limited predominantly by the chromatic instrumental systematic effect. The delay spectrum methodology for 21 cm power spectrum measurements brought new attention to the critical impact of an antenna's chromaticity on the viability of making this measurement. This methodology established a straightforward relationship between time-domain response of an instrument and the power spectrum modes accessible to a 21 cm EoR experiment. Read More

We study the impact of instrumental systematics on the variance, skewness, and kurtosis of redshifted 21 cm intensity fluctuation observations from the Epoch of Reionization. We simulate realistic 21 cm observations based on the Murchison Widefield Array (MWA) Phase I reionization experiment, using the array's point spread function (PSF) and antenna beam patterns, full-sky 21 cm models, and the FHD imaging pipeline. We measure the observed redshift evolution of pixel probability density functions (PDF) and one-point statistics from the simulated maps, comparing them to the measurements derived from simpler simulations that represent the instrument PSFs with Gaussian kernels. Read More

Authors: Demitri Muna, Michael Alexander, Alice Allen, Richard Ashley, Daniel Asmus, Ruyman Azzollini, Michele Bannister, Rachael Beaton, Andrew Benson, G. Bruce Berriman, Maciej Bilicki, Peter Boyce, Joanna Bridge, Jan Cami, Eryn Cangi, Xian Chen, Nicholas Christiny, Christopher Clark, Michelle Collins, Johan Comparat, Neil Cook, Darren Croton, Isak Delberth Davids, Éric Depagne, John Donor, Leonardo A. dos Santos, Stephanie Douglas, Alan Du, Meredith Durbin, Dawn Erb, Daniel Faes, J. G. Fernández-Trincado, Anthony Foley, Sotiria Fotopoulou, Søren Frimann, Peter Frinchaboy, Rafael Garcia-Dias, Artur Gawryszczak, Elizabeth George, Sebastian Gonzalez, Karl Gordon, Nicholas Gorgone, Catherine Gosmeyer, Katie Grasha, Perry Greenfield, Rebekka Grellmann, James Guillochon, Mark Gurwell, Marcel Haas, Alex Hagen, Daryl Haggard, Tim Haines, Patrick Hall, Wojciech Hellwing, Edmund Christian Herenz, Samuel Hinton, Renee Hlozek, John Hoffman, Derek Holman, Benne Willem Holwerda, Anthony Horton, Cameron Hummels, Daniel Jacobs, Jens Juel Jensen, David Jones, Arna Karick, Luke Kelley, Matthew Kenworthy, Ben Kitchener, Dominik Klaes, Saul Kohn, Piotr Konorski, Coleman Krawczyk, Kyler Kuehn, Teet Kuutma, Michael T. Lam, Richard Lane, Jochen Liske, Diego Lopez-Camara, Katherine Mack, Sam Mangham, Qingqing Mao, David J. E. Marsh, Cecilia Mateu, Loïc Maurin, James McCormac, Ivelina Momcheva, Hektor Monteiro, Michael Mueller, Roberto Munoz, Rohan Naidu, Nicholas Nelson, Christian Nitschelm, Chris North, Juan Nunez-Iglesias, Sara Ogaz, Russell Owen, John Parejko, Vera Patrício, Joshua Pepper, Marshall Perrin, Timothy Pickering, Jennifer Piscionere, Richard Pogge, Radek Poleski, Alkistis Pourtsidou, Adrian M. Price-Whelan, Meredith L. Rawls, Shaun Read, Glen Rees, Hanno Rein, Thomas Rice, Signe Riemer-Sørensen, Naum Rusomarov, Sebastian F. Sanchez, Miguel Santander-García, Gal Sarid, William Schoenell, Aleks Scholz, Robert L. Schuhmann, William Schuster, Peter Scicluna, Marja Seidel, Lijing Shao, Pranav Sharma, Aleksandar Shulevski, David Shupe, Cristóbal Sifón, Brooke Simmons, Manodeep Sinha, Ian Skillen, Bjoern Soergel, Thomas Spriggs, Sundar Srinivasan, Abigail Stevens, Ole Streicher, Eric Suchyta, Joshua Tan, O. Grace Telford, Romain Thomas, Chiara Tonini, Grant Tremblay, Sarah Tuttle, Tanya Urrutia, Sam Vaughan, Miguel Verdugo, Alexander Wagner, Josh Walawender, Andrew Wetzel, Kyle Willett, Peter K. G. Williams, Guang Yang, Guangtun Zhu, Andrea Zonca

The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Read More

Multiple instruments are pursuing constraints on dark energy, observing reionization and opening a window on the dark ages through the detection and characterization of the 21cm hydrogen line across the redshift spectrum, from nearby to z=25. These instruments, including CHIME in the sub-meter and HERA in the meter bands, are wide-field arrays with multiple-degree beams, typically operating in transit mode. Accurate knowledge of their primary beams is critical for separation of bright foregrounds from the desired cosmological signals, but difficult to achieve through astronomical observations alone. Read More

The Murchison Widefield Array (MWA) has collected hundreds of hours of Epoch of Reionization (EoR) data and now faces the challenge of overcoming foreground and systematic contamination to reduce the data to a cosmological measurement. We introduce several novel analysis techniques such as cable reflection calibration, hyper-resolution gridding kernels, diffuse foreground model subtraction, and quality control methods. Each change to the analysis pipeline is tested against a two dimensional power spectrum figure of merit to demonstrate improvement. Read More

The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization ($z=6-12$), and to explore earlier epochs of our Cosmic Dawn ($z\sim30$). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. Read More

We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple, independent, data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Read More

The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the Epoch of Reionization (EOR). Drawing on lessons from the Murchison Widefield Array (MWA) and the Precision Array for Probing the Epoch of Reionization (PAPER), HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. Not only does the dish determine overall sensitivity, it affects the observed frequency structure of foregrounds in the interferometer. Read More

Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization, and estimation of its basic physical parameters, is the principal scientific aim of many current low-frequency radio telescopes. Here we describe the Cosmological HI Power Spectrum Estimator (CHIPS), an algorithm developed and implemented with data from the Murchison Widefield Array (MWA), to compute the two-dimensional and spherically-averaged power spectrum of brightness temperature fluctuations. The principal motivations for CHIPS are the application of realistic instrumental and foreground models to form the optimal estimator, thereby maximising the likelihood of unbiased signal estimation, and allowing a full covariant understanding of the outputs. Read More

We confirm our recent prediction of the "pitchfork" foreground signature in power spectra of high-redshift 21 cm measurements where the interferometer is sensitive to large-scale structure on all baselines. This is due to the inherent response of a wide-field instrument and is characterized by enhanced power from foreground emission in Fourier modes adjacent to those considered to be the most sensitive to the cosmological H I signal. In our recent paper, many signatures from the simulation that predicted this feature were validated against Murchison Widefield Array (MWA) data, but this key pitchfork signature was close to the noise level. Read More

We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z=8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Read More

Detection of 21~cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. Read More

In this paper, we report new limits on 21cm emission from cosmic reionization based on a 135-day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. This work extends the work presented in Parsons et al. Read More

Polarized foreground emission is a potential contaminant of attempts to measure the fluctuation power spectrum of highly redshifted 21 cm HI emission from the epoch of reionization. Using the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), we present limits on the observed power spectra of all four Stokes parameters in two frequency bands, centered at 126 MHz ($z=10. Read More

We present the results of an approximately 6,100 square degree 104--196MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December: the Murchison Widefield Array Commissioning Survey (MWACS). The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The survey covers approximately 20. Read More

The epoch of reionization power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Read More

A number of experiments are currently working towards a measurement of the 21 cm signal from the Epoch of Reionization. Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by a next-generation of larger 21 cm EoR telescopes. Read More

We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64-antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor, and errors in this calibration are a major source of error in the determination of source spectra. Read More

We present new constraints on the 21cm Epoch of Reionization (EoR) power spectrum derived from 3 months of observing with a 32-antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over 8 orders of magnitude of foreground suppression (in $\textrm{mK}^2$). Read More

As observations of the Epoch of Reionization (EoR) in redshifted 21cm emission begin, we asses the accuracy of the early catalog results from the Precision Array for Probing the Epoch of Reionization (PAPER) and the Murchison Widefield Array. The MWA EoR approach derives much of its sensitivity from subtracting foregrounds to <1% precision while the PAPER approach relies on the stability and symmetry of the primary beam. Both require an accurate flux calibration to set the amplitude of the measured power spectrum. Read More

Experiments aimed at detecting highly-redshifted 21 centimeter emission from the Epoch of Reionization (EoR) are plagued by the contamination of foreground emission. A potentially important source of contaminating foregrounds may be Faraday-rotated, polarized emission, which leaks into the estimate of the intrinsically unpolarized EoR signal. While these foregrounds' intrinsic polarization may not be problematic, the spectral structure introduced by the Faraday rotation could be. Read More

We present new observations with the Precision Array for Probing the Epoch of Reionization (PAPER) with the aim of measuring the properties of foreground emission for 21cm Epoch of Reionization experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a "wedge"-like region of 2D (k-perpendicular, k-parallel)-space, creating a window for cosmological studies at higher k-parallel values. Read More

We present observations taken with the Precision Array for Probing the Epoch of Reionization (PAPER) of the Centaurus A field in the frequency range 114 to 188 MHz. The resulting image has a 25' resolution, a dynamic range of 3500 and an r.m. Read More

A critical challenge in measuring the power spectrum of 21cm emission from cosmic reionization is compensating for the frequency dependence of an interferometer's sampling pattern, which can cause smooth-spectrum foregrounds to appear unsmooth and degrade the separation between foregrounds and the target signal. In this paper, we present an approach to foreground removal that explicitly accounts for this frequency dependence. We apply the delay transformation introduced in Parsons & Backer (2009) to each baseline of an interferometer to concentrate smooth-spectrum foregrounds within the bounds of the maximum geometric delays physically realizable on that baseline. Read More

We present a new technique for calibrating the primary beam of a wide-field, drift-scanning antenna element. Drift-scan observing is not compatible with standard beam calibration routines, and the situation is further complicated by difficult-to-parametrize beam shapes and, at low frequencies, the sparsity of accurate source spectra to use as calibrators. We overcome these challenges by building up an interrelated network of source "crossing points" -- locations where the primary beam is sampled by multiple sources. Read More

We present observations from the Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa, observed in May and September 2010. Using two nights of drift scanning with PAPER's 60\arcdeg\ FWHM beam we have made a map covering the entire sky below +10 degrees declination with an effective center frequency of 145 MHz, a 70-MHz bandwidth, and a resolution of 26\arcmin. A 4800 square-degree region of this large map with the lowest Galactic emission reaches an RMS of 0. Read More

Telescopes aiming to measure 21cm emission from the Epoch of Reionization must toe a careful line, balancing the need for raw sensitivity against the stringent calibration requirements for removing bright foregrounds. It is unclear what the optimal design is for achieving both of these goals. Via a pedagogical derivation of an interferometer's response to the power spectrum of 21cm reionization fluctuations, we show that even under optimistic scenarios, first-generation arrays will yield low-SNR detections, and that different compact array configurations can substantially alter sensitivity. Read More

We are developing the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21cm emission from the early Universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a 4-antenna array in the low-RFI environment of Western Australia and an 8-antenna array at our prototyping site in Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. Read More

We analyze the trade-off between the amounts of information obtainable on complementary properties of a qubit state by simultaneous measurements. We consider a "state discrimination" scenario wherein the same measurements are repeated, but the input states must be guessed in every run. We find a general complementarity relation for path-phase guesses by any generalized measurements in this scenario. Read More

We examine two setups that reveal different operational implications of path-phase complementarity for single photons in a Mach-Zehnder interferometer (MZI). In both setups, the which-way (WW) information is recorded in the polarization state of the photon serving as a "flying which-way detector". In the "predictive" variant, using a {\em fixed} initial state, one obtains duality relation between the probability to correctly predict the outcome of either a which-way (WW) or which-phase (WP) measurement (equivalent to the conventional path-distinguishibility-visibility). Read More

Many scenarios have been proposed for the origin of the supermassive black holes (SMBHs) that are found in the centres of most galaxies. Many of these formation scenarios predict a high-redshift population of intermediate-mass black holes (IMBHs), with masses in the range 100 to 100000 times that of the Sun. A powerful way to observe these IMBHs is via gravitational waves the black holes emit as they merge. Read More