Daniel Gruen

Daniel Gruen
Are you Daniel Gruen?

Claim your profile, edit publications, add additional information:

Contact Details

Daniel Gruen

Pubs By Year

Pub Categories

Cosmology and Nongalactic Astrophysics (12)
Astrophysics of Galaxies (5)
Instrumentation and Methods for Astrophysics (3)
Earth and Planetary Astrophysics (1)

Publications Authored By Daniel Gruen

Since galaxy clusters sit at the high-end of the mass function, the number of galaxy clusters both massive and concentrated enough to yield particularly large Einstein radii poses useful constraints on cosmological and structure formation models. To date, less than a handful of clusters are known to have Einstein radii exceeding $\sim40$" (for a source at $z_{s}\simeq2$, nominally). Here, we report an addition to that list of the Sunyaev-Zel'dovich (SZ) selected cluster, PLCK G287. Read More

We report the observation and physical characterization of the possible dwarf planet 2014 UZ$_{224}$ ("DeeDee"), a dynamically detached trans-Neptunian object discovered at 92 AU. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an $r$-band magnitude of 23. Read More

To measure the mass of foreground objects with weak gravitational lensing, one needs to estimate the redshift distribution of lensed background sources. This is commonly done in an empirical fashion, i.e. Read More

We present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 square degree contiguous patch of DES data from the Science Verification (SV) period of observations. Using large scale measurements, we constrain the matter density of the Universe as Omega_m = 0. Read More

Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Read More


We present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Read More

We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters selected from the CLASH survey. Our analysis combines constraints from 16-band HST observations and wide-field multi-color imaging taken primarily with Subaru/Suprime-Cam. We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all clusters. Read More

We introduce an ordinal classification algorithm for photometric redshift estimation, which significantly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. Read More

Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the Poissonian noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. Read More

We investigate whether the large scale structure environment of galaxy clusters imprints a selection bias on Sunyaev Zel'dovich (SZ) catalogs. Such a selection effect might be caused by line of sight (LoS) structures that add to the SZ signal or contain point sources that disturb the signal extraction in the SZ survey. We use the Planck PSZ1 union catalog (Planck Collab- oration et al. Read More

When simulating sky images, one often takes a galaxy image $F(x)$ defined by a set of pixelized samples and an interpolation kernel, and then wants to produce a new sampled image representing this galaxy as it would appear with a different point-spread function, a rotation, shearing, or magnification, and/or a different pixel scale. These operations are sometimes only possible, or most efficiently executed, as resamplings of the Fourier transform $\tilde F(u)$ of the image onto a $u$-space grid that differs from the one produced by a discrete Fourier transform (DFT) of the samples. In some applications it is essential that the resampled image be accurate to better than 1 part in $10^3$, so in this paper we first use standard Fourier techniques to show that Fourier-domain interpolation with a wrapped sinc function yields the exact value of $\tilde F(u)$ in terms of the input samples and kernel. Read More

Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M_200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement M_ap that minimizes the mass estimate variance <(M_ap - M_200m)^2> in the presence of all these forms of variability. Read More