# D. De Florian - University de Buenos Aires

## Contact Details

NameD. De Florian |
||

AffiliationUniversity de Buenos Aires |
||

CityBuenos Aires |
||

CountryArgentina |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (50) High Energy Physics - Experiment (12) High Energy Physics - Theory (6) Nuclear Theory (1) |

## Publications Authored By D. De Florian

In this paper we present the computation of the Higgs boson pair production cross section, both inclusive as well as differential on the invariant mass distribution, at next-to-next-to-leading order (NNLO) in QCD including effects of new physics beyond the standard model. We parametrize the effects of new physics with the relevant dimension 6 operators in a standard model effective field theory (EFT) approach, and examine their phenomenology. The dependence of the NNLO $K$-factor on the EFT couplings is analysed, finding that, while rather flat for a number of EFT coefficients, it can considerable differ from the standard model value in some particular regions of the parameter space. Read More

We revisit the global QCD analysis of parton-to-kaon fragmentation functions at next-to-leading order accuracy using the latest experimental information on single-inclusive kaon production in electron-positron annihilation, lepton-nucleon deep-inelastic scattering, and proton-proton collisions. An excellent description of all data sets is achieved, and the remaining uncertainties in parton-to-kaon fragmentation functions are estimated and discussed based on the Hessian method. Extensive comparisons to the results from our previous global analysis are made. Read More

In this paper, we compute the first set of ${\cal O}(\alpha_s^2)$ corrections to semi-inclusive deep inelastic scattering structure functions. We start by studying the impact of the contribution of the partonic subprocesses that open at this order for the longitudinal structure function. We perform the full calculation analytically, and obtain the expression of the factorized cross section at this order. Read More

We study the mixed effect of QCD and QED corrections to the evolution of parton distribution functions (PDFs). The Altarelli-Parisi splitting functions are extended to one order higher in QED, reaching ${\cal O}(\alpha \, \alpha_S^2)$ accuracy. This also involves extending DGLAP equations to include charge separation effects, that are ignored for pure QCD corrections. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

In this paper we compute the QCD corrections for the triple Higgs boson production cross section via gluon fusion, within the heavy-top approximation. We present, for the first time, analytical results for the next-to-leading order corrections, and also compute the soft and virtual contributions of the next-to-next-to-leading order cross section. We provide predictions for the total cross section and the triple Higgs invariant mass distribution. Read More

In this review, we discuss the results on the parton-to-pion fragmentation functions obtained in a combined NLO fit to data of single-inclusive hadron production in electron-positron annihilation, proton-proton collisions, and lepton-nucleon deep-inelastic scattering. A more complete discussion can be found in Ref. [1]. Read More

**Authors:**R. Contino, D. Curtin, A. Katz, M. L. Mangano, G. Panico, M. J. Ramsey-Musolf, G. Zanderighi, C. Anastasiou, W. Astill, G. Bambhaniya, J. K. Behr, W. Bizon, P. S. Bhupal Dev, D. Bortoletto, D. Buttazzo, Q. -H. Cao, F. Caola, J. Chakrabortty, C. -Y. Chen, S. -L. Chen, D. de Florian, F. Dulat, C. Englert, J. A. Frost, B. Fuks, T. Gherghetta, G. Giudice, J. Gluza, N. Greiner, H. Gray, N. P. Hartland, C. Issever, T. Jelinski, A. Karlberg, J. H. Kim, F. Kling, A. Lazopoulos, S. J. Lee, Y. Liu, G. Luisoni, J. Mazzitelli, B. Mistlberger, P. Monni, K. Nikolopoulos, R. N. Mohapatra, A. Papaefstathiou, M. Perelstein, F. Petriello, T. Plehn, P. Reimitz, J. Ren, J. Rojo, K. Sakurai, T. Schell, F. Sala, M. Selvaggi, H. -S. Shao, M. Son, M. Spannowsky, T. Srivastava, S. -F. Su, R. Szafron, T. Tait, A. Tesi, A. Thamm, P. Torrielli, F. Tramontano, J. Winter, A. Wulzer, Q. -S. Yan, W. M. Yao, Y. -C. Zhang, X. Zhao, Z. Zhao, Y. -M. Zhong

This report summarises the physics opportunities for the study of Higgs bosons and the dynamics of electroweak symmetry breaking at the 100 TeV pp collider. Read More

We report on the first fully differential calculation for double Higgs boson production through gluon fusion in hadron collisions up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. The calculation is performed in the heavy-top limit of the Standard Model, and in the phenomenological results we focus on pp collisions at 14 TeV. We present differential distributions through NNLO for various observables including the transverse-momentum and rapidity distributions of the two Higgs bosons. Read More

We compute the two-loop QED corrections to the Altarelli-Parisi (AP) splitting functions by using a deconstructive algorithmic Abelianization of the well-known NLO QCD corrections. We present explicit results for the full set of splitting kernels in a basis that includes the leptonic distribution functions that, starting from this order in the QED coupling, couple to the partonic densities. Finally, we perform a phenomenological analysis of the impact of these corrections in the splitting functions. Read More

**Authors:**S. Alioli, A. B. Arbuzov, D. Yu. Bardin, L. Barze, C. Bernaciak, S. G. Bondarenko, C. Carloni Calame, M. Chiesa, S. Dittmaier, G. Ferrera, D. de Florian, M. Grazzini, S. Hoeche, A. Huss, S. Jadach, L. V. Kalinovskaya, A. Karlberg, F. Krauss, Y. Li, H. Martinez, G. Montagna, A. Mueck, P. Nason, O. Nicrosini, F. Petriello, F. Piccinini, W. Placzek, S. Prestel, E. Re, A. A. Sapronov, M. Schoenherr, C. Schwinn, A. Vicini, D. Wackeroth, Z. Was, G. Zanderighi

This report was prepared in the context of the LPCC "Electroweak Precision Measurements at the LHC WG" and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the $W$ boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. Read More

We discuss the combined effect of QED and QCD corrections to the evolution of parton distributions. We extend the available knowledge of the Altarelli-Parisi splitting functions to one order higher in QED, and provide explicit expressions for the splitting kernels up to ${\cal O}(\alpha \, \alpha_{\mathrm{S}})$. The results presented in this article allow to perform a parton distribution function analysis reaching full NLO QCD-QED combined precision. Read More

We present splitting functions in the triple collinear limit at next-to-leading order in the strong coupling. We performed the computation in the context of massless QCD+QED, and consider first collinear processes which include at least one photon. The IR divergent structure of the multi-partonic splitting functions agrees with the Catani's formula. Read More

We consider the transverse-momentum ($q_T$) distribution of Drell-Yan lepton pairs produced, via $W$ and $Z/\gamma^*$ decay, in hadronic collisions. At small values of $q_T$, we resum the logarithmically-enhanced perturbative QCD contributions up to next-to-next-to-leading logarithmic accuracy. Resummed results are consistently combined with the known ${\mathcal O}(\alpha_S^2)$ fixed-order results at intermediate and large values of $q_T$. Read More

We perform the threshold resummation for Higgs pair production in the dominant gluon fusion channel to next-to-next-to-leading logarithmic (NNLL) accuracy. The calculation includes the matching to the next-to-next-to-leading order (NNLO) cross section obtained in the heavy top-quark limit, and results in an increase of the inclusive cross section up to 7% at the LHC with centre-of-mass energy Ecm=14TeV, for the choice of factorization and renormalization scales $\mu_F=\mu_R=Q$, being Q the invariant mass of the Higgs pair system. After the resummation is implemented, we estimate the theoretical uncertainty from the perturbative expansion to be reduced to about +-5. Read More

We consider the transverse-momentum (qT) distribution of a diphoton pair produced in hadron collisions. At small values of qT , we resum the logarithmically-enhanced perturbative QCD contributions up to next-to-next-to-leading logarithmic accuracy. At intermediate and large values of qT, we consistently combine resummation with the known next-to-leading order perturbative result. Read More

We compute the interference between the resonant process $pp\to H(\rightarrow \gamma\gamma)+2 \text{ jets}$ and the corresponding continuum background at leading order in QCD. For the Higgs signal, we include gluon fusion (GF) and vector boson fusion (VBF) production channels, while for the background we consider all tree-level contributions, including pure EW effects (${\cal O}(\alpha_{QED}^4)$) and QCD contributions (${\cal O}(\alpha_{QED}^2 \alpha_{s}^2)$), plus the loop-induced gluon-initiated process. After convolution with the experimental mass resolution, the main effect of the interference is to shift the position of the mass peak, as in the inclusive GF case studied previously. Read More

We present a new, comprehensive global analysis of parton-to-pion fragmentation functions at next-to-leading order accuracy in QCD. The obtained results are based on the latest experimental information on single-inclusive pion production in electron-positron annihilation, lepton-nucleon deep-inelastic scattering, and proton-proton collisions. An excellent description of all data sets is achieved, and the remaining uncertainties in parton-to-pion fragmentation functions are estimated based on the Hessian method. Read More

We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling $\alpha_{\rm S}$, for the splitting processes $\gamma \to q \bar{q} \gamma$, $\gamma \to q \bar{q} g$ and $g \to q \bar{q} \gamma$. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Read More

**Affiliations:**

^{1}U. de Buenos Aires,

^{2}U. de Buenos Aires,

^{3}Hamburg U., Inst. Theor. Phys. II and DESY,

^{4}Liverpool U., Dept. Math.

**Category:**High Energy Physics - Phenomenology

The single-logarithmic enhancement of the physical kernel for Higgs production by gluon-gluon fusion in the heavy top-quark limit is employed to derive the leading so far unknown contributions, ln^{5,4,3}(1-z), to the N^3LO coefficient function in the threshold expansion. Also using knowledge from Higgs-exchange DIS to estimate the remaining terms not vanishing for z = m_H^2/s^hat -> 1, these results are combined with the recently completed soft + virtual contributions to provide an uncertainty band for the complete N^3LO correction. For the 2008 MSTW parton distributions these N^3LO contributions increase the cross section at 14 TeV by (10 +- 2)% and (3 +- 2. Read More

We present splitting functions in the triple collinear limit at next-to-leading order. The computation was performed in the context of massless QCD+QED, considering only processes which include at least one photon. Through the comparison of the IR divergent structure of splitting amplitudes with the expected known behavior, we were able to check our results. Read More

We present the Higgs boson pair production cross section at next-to-next-to-leading order in QCD within the large top-mass approximation. Numerical results for the LHC are provided, finding an increase of O(20%) with respect to the previous order prediction and a substantial reduction in the scale dependence. We normalize our results using the full top- and bottom-mass dependence at leading order. Read More

We consider QCD radiative corrections to the production of colourless high-mass systems in hadron collisions. We show that the recent computation of the soft-virtual corrections to Higgs boson production at N$^3$LO [1] together with the universality structure of soft-gluon emission can be exploited to extract the general expression of the hard-virtual coefficient that contributes to threshold resummation at N$^3$LL accuracy. The hard-virtual coefficient is directly related to the process-dependent virtual amplitude through a universal (process-independent) factorization formula that we explicitly evaluate up to three-loop order. Read More

**Authors:**J. Butterworth

^{1}, G. Dissertori

^{2}, S. Dittmaier

^{3}, D. de Florian

^{4}, N. Glover

^{5}, K. Hamilton

^{6}, J. Huston

^{7}, M. Kado

^{8}, A. Korytov

^{9}, F. Krauss

^{10}, G. Soyez

^{11}, J. R. Andersen

^{12}, S. Badger

^{13}, L. Barzè

^{14}, J. Bellm

^{15}, F. U. Bernlochner

^{16}, A. Buckley

^{17}, J. Butterworth

^{18}, N. Chanon

^{19}, M. Chiesa

^{20}, A. Cooper-Sarkar

^{21}, L. Cieri

^{22}, G. Cullen

^{23}, H. van Deurzen

^{24}, G. Dissertori

^{25}, S. Dittmaier

^{26}, D. de Florian

^{27}, S. Forte

^{28}, R. Frederix

^{29}, B. Fuks

^{30}, J. Gao

^{31}, M. V. Garzelli

^{32}, T. Gehrmann

^{33}, E. Gerwick

^{34}, S. Gieseke

^{35}, D. Gillberg

^{36}, E. W. N. Glover

^{37}, N. Greiner

^{38}, K. Hamilton

^{39}, T. Hapola

^{40}, H. B. Hartanto

^{41}, G. Heinrich

^{42}, A. Huss

^{43}, J. Huston

^{44}, B. Jäger

^{45}, M. Kado

^{46}, A. Kardos

^{47}, U. Klein

^{48}, F. Krauss

^{49}, A. Kruse

^{50}, L. Lönnblad

^{51}, G. Luisoni

^{52}, Daniel Maître

^{53}, P. Mastrolia

^{54}, O. Mattelaer

^{55}, J. Mazzitelli

^{56}, E. Mirabella

^{57}, P. Monni

^{58}, G. Montagna

^{59}, M. Moretti

^{60}, P. Nadolsky

^{61}, P. Nason

^{62}, O. Nicrosini

^{63}, C. Oleari

^{64}, G. Ossola

^{65}, S. Padhi

^{66}, T. Peraro

^{67}, F. Piccinini

^{68}, S. Plätzer

^{69}, S. Prestel

^{70}, J. Pumplin

^{71}, K. Rabbertz

^{72}, Voica Radescu

^{73}, L. Reina

^{74}, C. Reuschle

^{75}, J. Rojo

^{76}, M. Schönherr

^{77}, J. M. Smillie

^{78}, J. F. von Soden-Fraunhofen

^{79}, G. Soyez

^{80}, R. Thorne, F. Tramontano, Z. Trocsanyi, D. Wackeroth, J. Winter, C-P. Yuan, V. Yundin, K. Zapp

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners,

^{9}conveners,

^{10}conveners,

^{11}conveners,

^{12}conveners,

^{13}conveners,

^{14}conveners,

^{15}conveners,

^{16}conveners,

^{17}conveners,

^{18}conveners,

^{19}conveners,

^{20}conveners,

^{21}conveners,

^{22}conveners,

^{23}conveners,

^{24}conveners,

^{25}conveners,

^{26}conveners,

^{27}conveners,

^{28}conveners,

^{29}conveners,

^{30}conveners,

^{31}conveners,

^{32}conveners,

^{33}conveners,

^{34}conveners,

^{35}conveners,

^{36}conveners,

^{37}conveners,

^{38}conveners,

^{39}conveners,

^{40}conveners,

^{41}conveners,

^{42}conveners,

^{43}conveners,

^{44}conveners,

^{45}conveners,

^{46}conveners,

^{47}conveners,

^{48}conveners,

^{49}conveners,

^{50}conveners,

^{51}conveners,

^{52}conveners,

^{53}conveners,

^{54}conveners,

^{55}conveners,

^{56}conveners,

^{57}conveners,

^{58}conveners,

^{59}conveners,

^{60}conveners,

^{61}conveners,

^{62}conveners,

^{63}conveners,

^{64}conveners,

^{65}conveners,

^{66}conveners,

^{67}conveners,

^{68}conveners,

^{69}conveners,

^{70}conveners,

^{71}conveners,

^{72}conveners,

^{73}conveners,

^{74}conveners,

^{75}conveners,

^{76}conveners,

^{77}conveners,

^{78}conveners,

^{79}conveners,

^{80}conveners

**Category:**High Energy Physics - Phenomenology

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

We discuss the impact of recent high-statistics RHIC data on the determination of the gluon polarization in the proton in the context of a global QCD analysis of polarized parton distributions. We find clear evidence for a non-vanishing polarization of gluons in the region of momentum fraction and at the scales mostly probed by the data. Although information from low momentum fractions is presently lacking, this finding is suggestive of a significant contribution of gluon spin to the proton spin, thereby limiting the amount of orbital angular momentum required to balance the proton spin budget. Read More

We compute the next-to-next-to-leading order QCD corrections to the graviton production in models of TeV-scale gravity, within the soft-virtual approximation. For the Arkani-Hamed, Dimopoulos and Dvali (ADD) model we evaluate the contribution to the Drell-Yan cross section, and we present distributions for the di-lepton invariant mass at the LHC with a center-of-mass energy $\sqrt{s_H}=14\text{TeV}$. We find a large $K$ factor ($K\simeq 1. Read More

We present complete two-loop radiative corrections to the graviton-quark-antiquark form factor G^* \rightarrow q \overline q and graviton-gluon-gluon form factor G^* \rightarrow g g in SU(N) gauge theory with n_f light flavours using d-dimensional regularisation to all orders in \varepsilon=d-4. This is an important ingredient to next-to-next-to-leading order QCD corrections to hadronic scattering processes in models with large extra-dimensions where Kaluza-Klein graviton modes couple to Standard Model fields. We show that these form factors obey Sudakov integro-differential equation and the resulting cusp, collinear and soft anomalous dimensions coincide with those of electroweak vector boson and gluon form factors. Read More

We consider QCD radiative corrections to the production of colourless high-mass systems in hadron collisions. The logarithmically-enhanced contributions at small transverse momentum are treated to all perturbative orders by a universal resummation formula that depends on a single process-dependent hard factor. We show that the hard factor is directly related to the all-order virtual amplitude of the corresponding partonic process. Read More

We determine dominant next-to-next-to-leading order QCD corrections to single-inclusive jet production at the LHC and Tevatron, using the established threshold resummation framework. In contrast to previous literature on this topic, our study incorporates all of the following features: (1) It properly accounts for the way a jet is defined in experiment and treated in available full next-to-leading order calculations, (2) It includes the three leading classes of logarithmic terms in the perturbative expansion, and (3) It is adapted to the full kinematics in jet transverse momentum and rapidity relevant for experiments. A recent full next-to-next-to-leading order calculation in the purely gluonic channel allows us to assess the region where our approximate corrections provide an accurate description. Read More

We compute the next-to-leading order (NLO) QCD corrections to the $1 \to 2$ splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani's formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Read More

We compute the next-to-next-to-leading order QCD corrections for Standard Model Higgs boson pair production inclusive cross section at hadron colliders within the large top-mass approximation. We provide numerical results for the LHC, finding that the corrections are large, resulting in an increase of ${\cal O}(20%)$ with respect to the next-to-leading order result at c.m. Read More

**Authors:**The LHC Higgs Cross Section Working Group, S. Heinemeyer

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We study the cross section for the photoproduction reaction gamma N -> h X in fixed-target scattering at COMPASS, where the hadron h is produced at large transverse momentum. We investigate the role played by higher-order QCD corrections to the cross section. In particular we address large logarithmic "threshold" corrections to the rapidity dependent partonic cross sections, which we resum to all orders at next-to-leading accuracy. Read More

We present the two-loop virtual corrections to Standard Model Higgs boson pair production via gluon fusion $gg\to HH$ in the heavy top quark limit. Based on this result, we evaluate the corresponding cross section at the LHC at 14 TeV in the next-to-next-to-leading order soft-virtual approximation. We find an inclusive K-factor of about 2. Read More

We present the full ${\cal O}(\as^2)$ computation of the interference effects between the Higgs diphoton signal and the continuum background at the LHC. While the main contribution to the interference originates on the $gg$ partonic subprocess, we find that the corrections from the $qg$ and $q\bar{q}$ channels amount up to 35% of it. We discuss the effect of these new subprocesses in the shift of the diphoton invariant mass peak recently reported by S. Read More

We present an all-order generalized factorization formula for QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. The singular behaviour of the scattering amplitudes in the collinear limit is encoded by collinear splitting matrices. In the space-like region and beyond the tree level, the collinear splitting matrices depend also on the momenta and quantum numbers of the non-collinear partons, thus breaking strict collinear factorization. Read More

We present a next-to-leading order (NLO) computation of the full set of polarized and unpolarized electroweak semi-inclusive DIS (SIDIS) structure functions, whose knowledge is crucial for a precise extraction of polarized parton distributions. We focus on the phenomenology of the polarized structure functions for the kinematical conditions that could be reached in an Electron-Ion-Collider. We show that the NLO corrections are sizeable, particularly in the small-$x$ range. Read More

We compute the next-to-next-to-leading order (NNLO) soft and virtual QCD corrections for the partonic cross section of colourless-final state processes in hadronic collisions. The results are valid to all orders in the dimensional regularization parameter $\ep$. The dependence of the results on a particular process is given through finite contributions to the one and two-loop amplitudes. Read More

We consider QCD radiative corrections to vector-boson production in hadron collisions. We present the next-to-next-to-leading order (NNLO) result of the hard-collinear coefficient function for the all-order resummation of logarithmically-enhanced contributions at small transverse momenta. The coefficient function controls NNLO contributions in resummed calculations at full next-to-next-to-leading logarithmic accuracy. Read More

We present predictions for the inclusive cross section for Higgs boson production by gluon--gluon fusion in proton collisions at $\sqrt{s}=8$ TeV. Our calculation is accurate up to next-to-next-to-leading order in QCD perturbation theory and includes soft-gluon effects up to next-to-next-to-leading logarithmic accuracy and two-loop electroweak corrections. The dependence on heavy-quark masses is taken into account exactly up to next-to-leading order and next-to-leading logarithmic accuracy, and a treatment of the Higgs boson line-shape is provided according to the complex-pole scheme. Read More

We present a new global QCD analysis of nuclear parton distribution functions. In addition to the most commonly analyzed data sets for deep inelastic scattering of charged leptons off nuclei and Drell Yan di-lepton production, we include also measurements for neutrino-nuclei scattering as well as inclusive pion production in deuteron-gold collisions. The emerging picture is one of consistency, where universal nuclear modification factors for each parton flavor reproduce the main features of all data without any significant tension among the different sets. Read More

We consider Standard Model Higgs boson production through gluon--gluon fusion in hadron collisions. We combine the calculation of the next-to-next-to-leading order QCD corrections to the inclusive cross section with the resummation of multiple soft-gluon emissions at small transverse momenta up to next-to-next-to-leading logarithmic accuracy. The calculation is implemented in the numerical program HRes and allows us to retain the full kinematics of the Higgs boson and of its decay products. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We present a new global QCD analysis of nuclear parton distribution functions and their uncertainties. In addition to the most commonly analyzed data sets for the deep-inelastic scattering of charged leptons off nuclei and Drell-Yan di-lepton production, we include also measurements for neutrino-nucleus scattering and inclusive pion production in deuteron-gold collisions. The analysis is performed at next-to-leading order accuracy in perturbative QCD in a general mass variable flavor number scheme, adopting a current set of free nucleon parton distribution functions, defined accordingly, as reference. Read More

We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e. Read More

We discuss some recent developments concerning the nucleon's helicity parton distribution functions: New preliminary data from jet production at RHIC suggest for the first time a non-vanishing polarization of gluons in the nucleon. SIDIS measurements at COMPASS provide better constraints on the strange and light sea quark helicity distributions. Single-longitudinal spin asymmetries in W-boson production have been observed at RHIC and will ultimately give new insights into the light quark and anti-quark helicity structure of the nucleon. Read More

We consider direct diphoton production in hadron collisions, and we compute the next-to-next-to-leading order (NNLO) QCD radiative corrections at the fully-differential level. Our calculation uses the $q_T$ subtraction formalism and it is implemented in a parton level Monte Carlo program. The program allows the user to apply arbitrary kinematical cuts on the final-state photons and the associated jet activity, and to compute the corresponding distributions in the form of bin histograms. Read More

We consider the transverse-momentum (q_T) distribution of Standard Model
Higgs bosons produced by gluon fusion in hadron collisions. At small q_T
(q_T<

We discuss the current status of the DSSV global analysis of helicity-dependent parton densities. A comparison with recent semi-inclusive DIS data from COMPASS is presented, and constraints on the polarized strangeness density are examined in some detail. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. Baglio, P. Bolzoni, R. Boughezal, O. Brein, C. Collins-Tooth, S. Dawson, S. Dean, A. Denner, S. Farrington, M. Felcini, M. Flechl, D. de Florian, S. Forte, M. Grazzini, C. Hackstein, T. Hahn, R. Harlander, T. Hartonen, S. Heinemeyer, J. Huston, A. Kalinowski, M. Krämer, F. Krauss, J. S. Lee, S. Lehti, F. Maltoni, K. Mazumdar, S. -O. Moch, A. Mück, M. Mühlleitner, P. Nason, C. Neu, C. Oleari, J. Olsen, S. Palmer, F. Petriello, G. Piacquadio, A. Pilaftsis, C. T. Potter, I. Puljak, J. Qian, D. Rebuzzi, L. Reina, H. Rzehak, M. Schumacher, P. Slavich, M. Spira, F. Stöckli, R. S. Thorne, M. Vazquez Acosta, T. Vickey, A. Vicini, D. Wackeroth, M. Warsinsky, M. Weber, G. Weiglein, C. Weydert, J. Yu, M. Zaro, T. Zirke

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the first 10 months' activities of the LHC Higgs Cross Sections Working Group. The main goal of the working group was to present the status-of-art on Higgs Physics at the LHC integrating all new results that have appeared in the last few years. The Report is more than a mere collection of the proceedings of the general meetings. Read More