D. Rimal - The CLAS collaboration

D. Rimal
Are you D. Rimal?

Claim your profile, edit publications, add additional information:

Contact Details

Name
D. Rimal
Affiliation
The CLAS collaboration
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (17)
 
Nuclear Experiment (16)
 
Physics - Instrumentation and Detectors (5)
 
High Energy Physics - Phenomenology (1)
 
Nuclear Theory (1)

Publications Authored By D. Rimal

Charged-current $\nu_{\mu}$ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielastic-like interactions. The transfered four-momentum squared to the target nucleus, $Q^2$, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus $Q^2$ and the cross-section ratios of iron, lead and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on atomic number. Read More

We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. Read More

Neutral-current production of $K^{+}$ by atmospheric neutrinos is a background in searches for the proton decay $p \rightarrow K^{+} \bar{\nu}$. Reactions such as $\nu p \rightarrow \nu K^{+} \Lambda$ are indistinguishable from proton decays when the decay products of the $\Lambda$ are below detection threshold. MINERvA identifies $K^{+}$ events by reconstructing the timing signature of a $K^{+}$ decay at rest. Read More

The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an {\em in situ} prediction of the shape of the flux as a function of neutrino energy from 2--50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy ($\nu$) have a nearly constant cross section as a function of incident neutrino energy. Read More

Knowledge of the neutrino flux produced by the Neutrinos at the Main Injector (NuMI) beamline is essential to the neutrino oscillation and neutrino interaction measurements of the MINERvA, MINOS+, NOvA and MicroBooNE experiments at Fermi National Accelerator Laboratory. We have produced a flux prediction which uses all available and relevant hadron production data, incorporating measurements of particle production off of thin targets as well as measurements of particle yields from a spare NuMI target exposed to a 120 GeV proton beam. The result is the most precise flux prediction achieved for a neutrino beam in the one to tens of GeV energy region. Read More

Neutrino-induced charged-current coherent kaon production, $\nu_{\mu}A\rightarrow\mu^{-}K^{+}A$, is a rare, inelastic electroweak process that brings a $K^+$ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than neutrino-induced charged-current coherent pion production, because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state $K^+$, $\mu^-$ and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. Read More

Separate samples of charged-current pion production events representing two semi-inclusive channels $\nu_\mu$-CC($\pi^{+}$) and $\bar{\nu}_{\mu}$-CC($\pi^{0}$) have been obtained using neutrino and antineutrino exposures of the MINERvA detector. Distributions in kinematic variables based upon $\mu^{\pm}$-track reconstructions are analyzed and compared for the two samples. The differential cross sections for muon production angle, muon momentum, and four-momentum transfer $Q^2$, are reported, and cross sections versus neutrino energy are obtained. Read More

Production of K^{+} mesons in charged-current \nu_{\mu} interactions on plastic scintillator (CH) is measured using MINERvA exposed to the low-energy NuMI beam at Fermilab. Timing information is used to isolate a sample of 885 charged-current events containing a stopping K^{+} which decays at rest. The differential cross section in K^{+} kinetic energy, d\sigma/dT_{K}, is observed to be relatively flat between 0 and 500 MeV. Read More

The MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current neutral pion production with a broad energy distribution peaking at 7 GeV and a total cross section of 0. Read More

2016Mar
Authors: D. Rimal, D. Adikaram, B. A. Raue, L. B. Weinstein, J. Arrington, W. K. Brooks, M. Ungaro, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, R. P. Bennett, A. S. Biselli, S. Boiarinov, W. J. Briscoe, S. Bültmann, D. S. Carman, A. Celentano, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, R. Fersch, A. Filippi, J. A. Fleming, T. A. Forest, A. Fradi, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, C. Gleason, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, L. Guo, K. Hafidi, C. Hanretty, N. Harrison, M. Hattawy, D. Heddle, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, S. Joosten, D. Keller, P. Khetarpal, G. Khachatryan, M. Khandaker, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, H. Y. Lu, I . J . D. MacGregor, N. Markov, B. McKinnon, M. D. Mestayer, M. Mirazita, V. Mokeev, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, A. Ni, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, A. J. R. Puckett, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, E. Seder, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, Ivana Stankovic, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, B. Torayev, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

[Background] The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four momentum transfer ($Q^{2}$). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. Read More

The MINERvA collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5 - 50 GeV. Read More

Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based $\nu_\mu$ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to $\sim$ 10% due to uncertainties in hadron production and focusing. We have isolated a sample of 135 $\pm$ 17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. Read More

Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current $\nu_\mu$ interactions is combined with muon kinematics to permit separation of the quasielastic and $\Delta$(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Read More

The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. Read More

The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\nu_{e}$ with that of similarly-selected $\nu_{\mu}$-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current $\nu_{e}$ interactions used by long-baseline neutrino oscillation experiments. Read More

2014Nov
Authors: O. Hen, M. Sargsian, L. B. Weinstein, E. Piasetzky, H. Hakobyan, D. W. Higinbotham, M. Braverman, W. K. Brooks, S. Gilad, K. P. Adhikari, J. Arrington, G. Asryan, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, A. Beck, S. May-Tal Beck, I. Bedlinskiy, W. Bertozzi, A. Biselli, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, L. Colaneri, P. L. Cole, V. Crede, A. DAngelo, R. De Vita, A. Deur, C. Djalali, D. Doughty, M. Dugger, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, T. Forest, B. Garillon, M. Garcon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, J. T. Goetz, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, C. Hanretty, M. Hattawy, K. Hicks, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. I. Ishkanov, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, D. Keller, M. Khandaker, A. Kim, W. Kim, F. J. Klein, S. Koirala, I. Korover, S. E. Kuhn, V. Kubarovsky, P. Lenisa, W. I. Levine, K. Livingston, M. Lowry, H. Y. Lu, I. J. D. MacGregor, N. Markov, M. Mayer, B. McKinnon, T. Mineeva, V. Mokeev, A. Movsisyan, C. Munoz Camacho, B. Mustapha, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, L. L. Pappalardo, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, D. Rimal, M. Ripani, B. G. Ritchie, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatie, D. Schott, R. A. Schumacher, Y. G. Sharabian, G. D. Smith, R. Shneor, D. Sokhan, S. S. Stepanyan, S. Stepanyan, P. Stoler, S. Strauch, V. Sytnik, M. Taiuti, S. Tkachenko, M. Ungaro, A. V. Vlassov, E. Voutier, D. Watts, N. K. Walford, X. Wei, M. H. Wood, S. A. Wood, N. Zachariou, L. Zana, Z. W. Zhao, X. Zheng, I. Zonta

The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Read More

2014Nov
Authors: D. Adikaram, D. Rimal, L. B. Weinstein, B. Raue, P. Khetarpal, R. P. Bennett, J. Arrington, W. K. Brooks, K. P. Adhikari, A. V. Afanasev, M. J. Amaryan, M. D. Anderson, J. Ball, M. Battaglieri, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, A. Fradi, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, K. Hicks, M. Holtrop, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, K. Joo, S. Joosten, M. Khandaker, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, B. McKinnon, M. D. Mestayer, C. A. Meyer, M. Mirazita, V. Mokeev, R. A. Montgomery, C. I. Moody, H. Moutarde, A Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, F. Sabatié, D. Schott, R. A. Schumacher, Y. G. Sharabian, A. Simonyan, I. Skorodumina, E. S. Smith, G. D. Smith, D. I. Sober, N. Sparveris, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, Ye Tian, A. Trivedi, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, The CLAS Collaboration

There is a significant discrepancy between the values of the proton electric form factor, $G_E^p$, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of $G_E^p$ from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. Read More

2014Jun
Authors: M. Gabrielyan, B. A. Raue, D. S. Carman, K. Park, K. P. Adhikari, D. Adikaram, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Baturin, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. DAngelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, B. Garillon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, D. Keller, M. Khandaker, W. Kim, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, P. Lenisa, W. I. Levine, K. Livingston, I. J. D. MacGregor, M. Mayer, B. McKinnon, C. A. Meyer, M. D. Mestayer, M. Mirazita, V. Mokeev, C. I. Moody, H. Moutarde, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, M. Osipenko, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, P. Peng, W. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, D. Rimal, M. Ripani, A. Rizzo, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, A. Simonyan, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sytnik, W. Tang, M. Ungaro, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, L. B. Weinstein, N. Zachariou, L. Zana, J. Zhang

We have measured the induced polarization of the ${\Lambda}(1116)$ in the reaction $ep\rightarrow e'K^+{\Lambda}$, detecting the scattered $e'$ and $K^+$ in the final state along with the proton from the decay $\Lambda\rightarrow p\pi^-$.The present study used the CEBAF Large Acceptance Spectrometer (CLAS), which allowed for a large kinematic acceptance in invariant energy $W$ ($1.6\leq W \leq 2. Read More

2014Apr
Authors: Y. Prok, P. Bosted, N. Kvaltine, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. D. Anderson, S. Anefalos Pereira, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, A. S. Biselli, J. Bono, W. J. Briscoe, J. Brock, W. K. Brooks, S. Bültmann, V. D. Burkert, C. Carlin, D. S. Carman, A. Celentano, S. Chandavar, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, D. Crabb, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, T. A. Forest, M. Garcon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, K. L. Giovanetti, J. T. Goetz, W. Gohn, R. W. Gothe, K. A. Griffioen, B. Guegan, N. Guler, K. Haffidi, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, S. Jawalkar, X. Jiang, H. S. Jo, K. Joo, N. Kalantarians, C. Keith, D. Keller, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, P. Lenisa, K. Livingston, H. Y. Lu, I . J. D. MacGregor, N. Markov, M. Mayee, B. McKinnon, D. Meekins, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, H. Moutarde, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, P. Peng, J. J. Phillips, J. Pierce, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, D. Rimal, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, Y. G. Sharabian, A. Simonyan, C. Smith, G. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sytnik, M. Taiuti, W. Tang, S. Tkachenko, M. Ungaro, B . Vernarsky, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D . P. Watts, L. B. Weinstein, N. Zachariou, L. Zana, J. Zhang, B. Zhao, Z. W. Zhao, I. Zonta, for the CLAS collaboration

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Read More

2014Feb
Authors: S. Tkachenko1, N. Baillie2, S. E. Kuhn3, J. Zhang4, J. Arrington5, P. Bosted6, S. Bültmann7, M. E. Christy8, D. Dutta9, R. Ent10, H. Fenker11, K. A. Griffioen12, M. Ispiryan13, N. Kalantarians14, C. E. Keppel15, W. Melnitchouk16, V. Tvaskis17, K. P. Adhikari18, M. Aghasyan19, M. J. Amaryan20, S. Anefalos Pereira21, H. Avakian22, J. Ball23, N. A. Baltzell24, M. Battaglieri25, I. Bedlinskiy26, A. S. Biselli27, W. J. Briscoe28, W. K. Brooks29, V. D. Burkert30, D. S. Carman31, A. Celentano32, S. Chandavar33, G. Charles34, P. L. Cole35, M. Contalbrigo36, O. Cortes37, V. Crede38, A. D'Angelo39, N. Dashyan40, R. De Vita41, E. De Sanctis42, A. Deur43, C. Djalali44, G. E. Dodge45, D. Doughty46, R. Dupre47, H. Egiyan48, A. El Alaoui49, L. El Fassi50, L. Elouadrhiri51, P. Eugenio52, G. Fedotov53, J. A. Fleming54, B. Garillon55, N. Gevorgyan56, Y. Ghandilyan57, G. P. Gilfoyle58, K. L. Giovanetti59, F. X. Girod60, J. T. Goetz61, E. Golovatch62, R. W. Gothe63, M. Guidal64, L. Guo65, K. Hafidi66, H. Hakobyan67, C. Hanretty68, N. Harrison69, M. Hattawy70, K. Hicks71, D. Ho72, M. Holtrop73, C . E. Hyde74, Y. Ilieva75, D. G. Ireland76, B. S. Ishkhanov77, H. S. Jo78, D. Keller79, M. Khandaker80, A. Kim81, W. Kim82, P. M. King83, A. Klein84, F. J. Klein85, S. Koirala86, V. Kubarovsky87, S. V. Kuleshov88, P. Lenisa89, S. Lewis90, K. Livingston91, H. Lu92, M. MacCormick93, I. J. D. MacGregor94, N. Markov95, M. Mayer96, B. McKinnon97, T. Mineeva98, M. Mirazita99, V. Mokeev100, R. A. Montgomery101, H. Moutarde102, C. Munoz Camacho103, P. Nadel-Turonski104, S. Niccolai105, G. Niculescu106, I. Niculescu107, M. Osipenko108, L. L. Pappalardo109, R. Paremuzyan110, K. Park111, E. Pasyuk112, J. J. Phillips113, S. Pisano114, O. Pogorelko115, S. Pozdniakov116, J. W. Price117, S. Procureur118, D. Protopopescu119, A. J . R. Puckett120, D. Rimal121, M. Ripani122, A. Rizzo123, G. Rosner124, P. Rossi125, P. Roy126, F. Sabatié127, D. Schott128, R. A. Schumacher129, E. Seder130, I. Senderovich131, Y. G. Sharabian132, A. Simonyan133, G. D. Smith134, D. I. Sober135, D. Sokhan136, S. Stepanyan137, S. S. Stepanyan138, S. Strauch139, W. Tang140, M. Ungaro141, A. V. Vlassov142, H. Voskanyan143, E. Voutier144, N. K. Walford145, D. Watts146, X. Wei147, L. B. Weinstein148, M. H. Wood149, L. Zana150, I. Zonta151
Affiliations: 1The CLAS collaboration, 2The CLAS collaboration, 3The CLAS collaboration, 4The CLAS collaboration, 5The CLAS collaboration, 6The CLAS collaboration, 7The CLAS collaboration, 8The CLAS collaboration, 9The CLAS collaboration, 10The CLAS collaboration, 11The CLAS collaboration, 12The CLAS collaboration, 13The CLAS collaboration, 14The CLAS collaboration, 15The CLAS collaboration, 16The CLAS collaboration, 17The CLAS collaboration, 18The CLAS collaboration, 19The CLAS collaboration, 20The CLAS collaboration, 21The CLAS collaboration, 22The CLAS collaboration, 23The CLAS collaboration, 24The CLAS collaboration, 25The CLAS collaboration, 26The CLAS collaboration, 27The CLAS collaboration, 28The CLAS collaboration, 29The CLAS collaboration, 30The CLAS collaboration, 31The CLAS collaboration, 32The CLAS collaboration, 33The CLAS collaboration, 34The CLAS collaboration, 35The CLAS collaboration, 36The CLAS collaboration, 37The CLAS collaboration, 38The CLAS collaboration, 39The CLAS collaboration, 40The CLAS collaboration, 41The CLAS collaboration, 42The CLAS collaboration, 43The CLAS collaboration, 44The CLAS collaboration, 45The CLAS collaboration, 46The CLAS collaboration, 47The CLAS collaboration, 48The CLAS collaboration, 49The CLAS collaboration, 50The CLAS collaboration, 51The CLAS collaboration, 52The CLAS collaboration, 53The CLAS collaboration, 54The CLAS collaboration, 55The CLAS collaboration, 56The CLAS collaboration, 57The CLAS collaboration, 58The CLAS collaboration, 59The CLAS collaboration, 60The CLAS collaboration, 61The CLAS collaboration, 62The CLAS collaboration, 63The CLAS collaboration, 64The CLAS collaboration, 65The CLAS collaboration, 66The CLAS collaboration, 67The CLAS collaboration, 68The CLAS collaboration, 69The CLAS collaboration, 70The CLAS collaboration, 71The CLAS collaboration, 72The CLAS collaboration, 73The CLAS collaboration, 74The CLAS collaboration, 75The CLAS collaboration, 76The CLAS collaboration, 77The CLAS collaboration, 78The CLAS collaboration, 79The CLAS collaboration, 80The CLAS collaboration, 81The CLAS collaboration, 82The CLAS collaboration, 83The CLAS collaboration, 84The CLAS collaboration, 85The CLAS collaboration, 86The CLAS collaboration, 87The CLAS collaboration, 88The CLAS collaboration, 89The CLAS collaboration, 90The CLAS collaboration, 91The CLAS collaboration, 92The CLAS collaboration, 93The CLAS collaboration, 94The CLAS collaboration, 95The CLAS collaboration, 96The CLAS collaboration, 97The CLAS collaboration, 98The CLAS collaboration, 99The CLAS collaboration, 100The CLAS collaboration, 101The CLAS collaboration, 102The CLAS collaboration, 103The CLAS collaboration, 104The CLAS collaboration, 105The CLAS collaboration, 106The CLAS collaboration, 107The CLAS collaboration, 108The CLAS collaboration, 109The CLAS collaboration, 110The CLAS collaboration, 111The CLAS collaboration, 112The CLAS collaboration, 113The CLAS collaboration, 114The CLAS collaboration, 115The CLAS collaboration, 116The CLAS collaboration, 117The CLAS collaboration, 118The CLAS collaboration, 119The CLAS collaboration, 120The CLAS collaboration, 121The CLAS collaboration, 122The CLAS collaboration, 123The CLAS collaboration, 124The CLAS collaboration, 125The CLAS collaboration, 126The CLAS collaboration, 127The CLAS collaboration, 128The CLAS collaboration, 129The CLAS collaboration, 130The CLAS collaboration, 131The CLAS collaboration, 132The CLAS collaboration, 133The CLAS collaboration, 134The CLAS collaboration, 135The CLAS collaboration, 136The CLAS collaboration, 137The CLAS collaboration, 138The CLAS collaboration, 139The CLAS collaboration, 140The CLAS collaboration, 141The CLAS collaboration, 142The CLAS collaboration, 143The CLAS collaboration, 144The CLAS collaboration, 145The CLAS collaboration, 146The CLAS collaboration, 147The CLAS collaboration, 148The CLAS collaboration, 149The CLAS collaboration, 150The CLAS collaboration, 151The CLAS collaboration

Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. Read More

2013Jun
Authors: M. Moteabbed, M. Niroula, B. A. Raue, L. B. Weinstein, D. Adikaram, J. Arrington, W. K. Brooks, J. Lachniet, Dipak Rimal, M. Ungaro, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, R. P. Bennett, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, P. L. Cole, P. Collins, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, N. Guler, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, D. Ho, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, D. Keller, M. Khandaker, A. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, S. Lewis, H. Y. Lu, M. MacCormick, I . J . D. MacGregor, D. Martinez, M. Mayer, B. McKinnon, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, K. Moriya, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, R. Nasseripour, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, M. Ripani, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. Stepanyan, S. Strauch, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, H. Voskanyan, E. Voutier, N. K. Walford, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct $e^\pm p$ comparisons, which has the potential to make precise measurements over a broad range in $Q^2$ and scattering angles. Read More

2013Mar
Authors: I. Pomerantz1, Y. Ilieva2, R. Gilman3, D. W. Higinbotham4, E. Piasetzky5, S. Strauch6, K. P. Adhikari7, M. Aghasyan8, K. Allada9, M. J. Amaryan10, S. Anefalos Pereira11, M. Anghinolfi12, H. Baghdasaryan13, J. Ball14, N. A. Baltzell15, M. Battaglieri16, V. Batourine17, A. Beck18, S. Beck19, I. Bedlinskiy20, B. L. Berman21, A. S. Biselli22, W. Boeglin23, J. Bono24, C. Bookwalter25, S. Boiarinov26, W. J. Briscoe27, W. K. Brooks28, N. Bubis29, V. Burkert30, A. Camsonne31, M. Canan32, D. S. Carman33, A. Celentano34, S. Chandavar35, G. Charles36, K. Chirapatpimol37, E. Cisbani38, P. L. Cole39, M. Contalbrigo40, V. Crede41, F. Cusanno42, A. D'Angelo43, A. Daniel44, N. Dashyan45, C. W. de Jager46, R. De Vita47, E. De Sanctis48, A. Deur49, C. Djalali50, G. E. Dodge51, D. Doughty52, R. Dupre53, C. Dutta54, H. Egiyan55, A. El Alaoui56, L. El Fassi57, P. Eugenio58, G. Fedotov59, S. Fegan60, J. A. Fleming61, A. Fradi62, F. Garibaldi63, O. Geagla64, N. Gevorgyan65, K. L. Giovanetti66, F. X. Girod67, J. Glister68, J. T. Goetz69, W. Gohn70, E. Golovatch71, R. W. Gothe72, K. A. Griffioen73, B. Guegan74, M. Guidal75, L. Guo76, K. Hafidi77, H. Hakobyan78, N. Harrison79, D. Heddle80, K. Hicks81, D. Ho82, M. Holtrop83, C. E. Hyde84, D. G. Ireland85, B. S. Ishkhanov86, E. L. Isupov87, X. Jiang88, H. S. Jo89, K. Joo90, A. T. Katramatou91, D. Keller92, M. Khandaker93, P. Khetarpal94, E. Khrosinkova95, A. Kim96, W. Kim97, F. J. Klein98, S. Koirala99, A. Kubarovsky100, V. Kubarovsky101, S. V. Kuleshov102, N. D. Kvaltine103, B. Lee104, J. J. LeRose105, S. Lewis106, R. Lindgren107, K. Livingston108, H. Y. Lu109, I. J. D. MacGregor110, Y. Mao111, D. Martinez112, M. Mayer113, E. McCullough114, B. McKinnon115, D. Meekins116, C. A. Meyer117, R. Michaels118, T. Mineeva119, M. Mirazita120, B. Moffit121, V. Mokeev122, R. A. Montgomery123, H. Moutarde124, E. Munevar125, C. Munoz Camacho126, P. Nadel-Turonski127, R. Nasseripour128, C. S. Nepali129, S. Niccolai130, G. Niculescu131, I. Niculescu132, M. Osipenko133, A. I. Ostrovidov134, L. L. Pappalardo135, R. Paremuzyan136, K. Park137, S. Park138, G. G. Petratos139, E. Phelps140, S. Pisano141, O. Pogorelko142, S. Pozdniakov143, S. Procureur144, D. Protopopescu145, A. J. R. Puckett146, X. Qian147, Y. Qiang148, G. Ricco149, D. Rimal150, M. Ripani151, B. G. Ritchie152, I. Rodriguez153, G. Ron154, G. Rosner155, P. Rossi156, F. Sabatie157, A. Saha158, M. S. Saini159, A. J. Sarty160, B. Sawatzky161, N. A. Saylor162, D. Schott163, E. Schulte164, R. A. Schumacher165, E. Seder166, H. Seraydaryan167, R. Shneor168, G. D. Smith169, D. Sokhan170, N. Sparveris171, S. S. Stepanyan172, S. Stepanyan173, P. Stoler174, R. Subedi175, V. Sulkosky176, M. Taiuti177, W. Tang178, C. E. Taylor179, S. Tkachenko180, M. Ungaro181, B. Vernarsky182, M. F. Vineyard183, H. Voskanyan184, E. Voutier185, N. K. Walford186, Y. Wang187, D. P. Watts188, L. B. Weinstein189, D. P. Weygand190, B. Wojtsekhowski191, M. H. Wood192, X. Yan193, H. Yao194, N. Zachariou195, X. Zhan196, J. Zhang197, Z. W. Zhao198, X. Zheng199, I. Zonta200
Affiliations: 1The CLAS and Hall-A Collaborations, 2The CLAS and Hall-A Collaborations, 3The CLAS and Hall-A Collaborations, 4The CLAS and Hall-A Collaborations, 5The CLAS and Hall-A Collaborations, 6The CLAS and Hall-A Collaborations, 7The CLAS and Hall-A Collaborations, 8The CLAS and Hall-A Collaborations, 9The CLAS and Hall-A Collaborations, 10The CLAS and Hall-A Collaborations, 11The CLAS and Hall-A Collaborations, 12The CLAS and Hall-A Collaborations, 13The CLAS and Hall-A Collaborations, 14The CLAS and Hall-A Collaborations, 15The CLAS and Hall-A Collaborations, 16The CLAS and Hall-A Collaborations, 17The CLAS and Hall-A Collaborations, 18The CLAS and Hall-A Collaborations, 19The CLAS and Hall-A Collaborations, 20The CLAS and Hall-A Collaborations, 21The CLAS and Hall-A Collaborations, 22The CLAS and Hall-A Collaborations, 23The CLAS and Hall-A Collaborations, 24The CLAS and Hall-A Collaborations, 25The CLAS and Hall-A Collaborations, 26The CLAS and Hall-A Collaborations, 27The CLAS and Hall-A Collaborations, 28The CLAS and Hall-A Collaborations, 29The CLAS and Hall-A Collaborations, 30The CLAS and Hall-A Collaborations, 31The CLAS and Hall-A Collaborations, 32The CLAS and Hall-A Collaborations, 33The CLAS and Hall-A Collaborations, 34The CLAS and Hall-A Collaborations, 35The CLAS and Hall-A Collaborations, 36The CLAS and Hall-A Collaborations, 37The CLAS and Hall-A Collaborations, 38The CLAS and Hall-A Collaborations, 39The CLAS and Hall-A Collaborations, 40The CLAS and Hall-A Collaborations, 41The CLAS and Hall-A Collaborations, 42The CLAS and Hall-A Collaborations, 43The CLAS and Hall-A Collaborations, 44The CLAS and Hall-A Collaborations, 45The CLAS and Hall-A Collaborations, 46The CLAS and Hall-A Collaborations, 47The CLAS and Hall-A Collaborations, 48The CLAS and Hall-A Collaborations, 49The CLAS and Hall-A Collaborations, 50The CLAS and Hall-A Collaborations, 51The CLAS and Hall-A Collaborations, 52The CLAS and Hall-A Collaborations, 53The CLAS and Hall-A Collaborations, 54The CLAS and Hall-A Collaborations, 55The CLAS and Hall-A Collaborations, 56The CLAS and Hall-A Collaborations, 57The CLAS and Hall-A Collaborations, 58The CLAS and Hall-A Collaborations, 59The CLAS and Hall-A Collaborations, 60The CLAS and Hall-A Collaborations, 61The CLAS and Hall-A Collaborations, 62The CLAS and Hall-A Collaborations, 63The CLAS and Hall-A Collaborations, 64The CLAS and Hall-A Collaborations, 65The CLAS and Hall-A Collaborations, 66The CLAS and Hall-A Collaborations, 67The CLAS and Hall-A Collaborations, 68The CLAS and Hall-A Collaborations, 69The CLAS and Hall-A Collaborations, 70The CLAS and Hall-A Collaborations, 71The CLAS and Hall-A Collaborations, 72The CLAS and Hall-A Collaborations, 73The CLAS and Hall-A Collaborations, 74The CLAS and Hall-A Collaborations, 75The CLAS and Hall-A Collaborations, 76The CLAS and Hall-A Collaborations, 77The CLAS and Hall-A Collaborations, 78The CLAS and Hall-A Collaborations, 79The CLAS and Hall-A Collaborations, 80The CLAS and Hall-A Collaborations, 81The CLAS and Hall-A Collaborations, 82The CLAS and Hall-A Collaborations, 83The CLAS and Hall-A Collaborations, 84The CLAS and Hall-A Collaborations, 85The CLAS and Hall-A Collaborations, 86The CLAS and Hall-A Collaborations, 87The CLAS and Hall-A Collaborations, 88The CLAS and Hall-A Collaborations, 89The CLAS and Hall-A Collaborations, 90The CLAS and Hall-A Collaborations, 91The CLAS and Hall-A Collaborations, 92The CLAS and Hall-A Collaborations, 93The CLAS and Hall-A Collaborations, 94The CLAS and Hall-A Collaborations, 95The CLAS and Hall-A Collaborations, 96The CLAS and Hall-A Collaborations, 97The CLAS and Hall-A Collaborations, 98The CLAS and Hall-A Collaborations, 99The CLAS and Hall-A Collaborations, 100The CLAS and Hall-A Collaborations, 101The CLAS and Hall-A Collaborations, 102The CLAS and Hall-A Collaborations, 103The CLAS and Hall-A Collaborations, 104The CLAS and Hall-A Collaborations, 105The CLAS and Hall-A Collaborations, 106The CLAS and Hall-A Collaborations, 107The CLAS and Hall-A Collaborations, 108The CLAS and Hall-A Collaborations, 109The CLAS and Hall-A Collaborations, 110The CLAS and Hall-A Collaborations, 111The CLAS and Hall-A Collaborations, 112The CLAS and Hall-A Collaborations, 113The CLAS and Hall-A Collaborations, 114The CLAS and Hall-A Collaborations, 115The CLAS and Hall-A Collaborations, 116The CLAS and Hall-A Collaborations, 117The CLAS and Hall-A Collaborations, 118The CLAS and Hall-A Collaborations, 119The CLAS and Hall-A Collaborations, 120The CLAS and Hall-A Collaborations, 121The CLAS and Hall-A Collaborations, 122The CLAS and Hall-A Collaborations, 123The CLAS and Hall-A Collaborations, 124The CLAS and Hall-A Collaborations, 125The CLAS and Hall-A Collaborations, 126The CLAS and Hall-A Collaborations, 127The CLAS and Hall-A Collaborations, 128The CLAS and Hall-A Collaborations, 129The CLAS and Hall-A Collaborations, 130The CLAS and Hall-A Collaborations, 131The CLAS and Hall-A Collaborations, 132The CLAS and Hall-A Collaborations, 133The CLAS and Hall-A Collaborations, 134The CLAS and Hall-A Collaborations, 135The CLAS and Hall-A Collaborations, 136The CLAS and Hall-A Collaborations, 137The CLAS and Hall-A Collaborations, 138The CLAS and Hall-A Collaborations, 139The CLAS and Hall-A Collaborations, 140The CLAS and Hall-A Collaborations, 141The CLAS and Hall-A Collaborations, 142The CLAS and Hall-A Collaborations, 143The CLAS and Hall-A Collaborations, 144The CLAS and Hall-A Collaborations, 145The CLAS and Hall-A Collaborations, 146The CLAS and Hall-A Collaborations, 147The CLAS and Hall-A Collaborations, 148The CLAS and Hall-A Collaborations, 149The CLAS and Hall-A Collaborations, 150The CLAS and Hall-A Collaborations, 151The CLAS and Hall-A Collaborations, 152The CLAS and Hall-A Collaborations, 153The CLAS and Hall-A Collaborations, 154The CLAS and Hall-A Collaborations, 155The CLAS and Hall-A Collaborations, 156The CLAS and Hall-A Collaborations, 157The CLAS and Hall-A Collaborations, 158The CLAS and Hall-A Collaborations, 159The CLAS and Hall-A Collaborations, 160The CLAS and Hall-A Collaborations, 161The CLAS and Hall-A Collaborations, 162The CLAS and Hall-A Collaborations, 163The CLAS and Hall-A Collaborations, 164The CLAS and Hall-A Collaborations, 165The CLAS and Hall-A Collaborations, 166The CLAS and Hall-A Collaborations, 167The CLAS and Hall-A Collaborations, 168The CLAS and Hall-A Collaborations, 169The CLAS and Hall-A Collaborations, 170The CLAS and Hall-A Collaborations, 171The CLAS and Hall-A Collaborations, 172The CLAS and Hall-A Collaborations, 173The CLAS and Hall-A Collaborations, 174The CLAS and Hall-A Collaborations, 175The CLAS and Hall-A Collaborations, 176The CLAS and Hall-A Collaborations, 177The CLAS and Hall-A Collaborations, 178The CLAS and Hall-A Collaborations, 179The CLAS and Hall-A Collaborations, 180The CLAS and Hall-A Collaborations, 181The CLAS and Hall-A Collaborations, 182The CLAS and Hall-A Collaborations, 183The CLAS and Hall-A Collaborations, 184The CLAS and Hall-A Collaborations, 185The CLAS and Hall-A Collaborations, 186The CLAS and Hall-A Collaborations, 187The CLAS and Hall-A Collaborations, 188The CLAS and Hall-A Collaborations, 189The CLAS and Hall-A Collaborations, 190The CLAS and Hall-A Collaborations, 191The CLAS and Hall-A Collaborations, 192The CLAS and Hall-A Collaborations, 193The CLAS and Hall-A Collaborations, 194The CLAS and Hall-A Collaborations, 195The CLAS and Hall-A Collaborations, 196The CLAS and Hall-A Collaborations, 197The CLAS and Hall-A Collaborations, 198The CLAS and Hall-A Collaborations, 199The CLAS and Hall-A Collaborations, 200The CLAS and Hall-A Collaborations

We have measured cross sections for the gamma+3He->p+d reaction at photon energies of 0.4 - 1.4 GeV and a center-of-mass angle of 90 deg. Read More

2013Feb
Authors: C. S. Nepali, M. Amaryan, K. P. Adhikari, M. Aghasyan, S. Anefalos Pereira, H. Baghdasaryan, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, S. Bültmann, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, P. Collins, M. Contalbrigo, V. Crede, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, A. El Alaoui, L. El Fassi, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, M. Y. Gabrielyan, N. Gevorgyan, K. L. Giovanetti, F. X. Girod, D. I. Glazier, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, N. Guler, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, D. Ho, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, N. D. Kvaltine, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, B. McKinnon, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, E. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, D. Rimal, M. Ripani, B. G. Ritchie, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, B. Torayev, B. Vernarsky, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, J. Zhang

Experimental results on the $\Sigma^+(1189)$ hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson laboratory are presented. The $\Sigma^+(1189)$ was reconstructed in the exclusive reaction $\gamma+p\rightarrow K^{0}_{S} + \Sigma^+(1189)$ via the $\Sigma^{+} \to p \pi^{0}$ decay mode. The $K^{0}_S$ was reconstructed in the invariant mass of two oppositely charged pions with the $\pi^0$ identified in the missing mass of the detected $p\pi^+\pi^-$ final state. Read More

2012Nov
Authors: P. Khetarpal, P. Stoler, I. G. Aznauryan, V. Kubarovsky, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. D. Anderson, S. Anefalos Pereira, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, G. Charles, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, M. Dugger, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, A. Fradi, M. Y. Gabrielyan, M. Garçon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, B. Guegan, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, K. Hicks, D. Ho, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, D. Keller, M. Khandaker, A. Kim, W. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, S. V. Kuleshov, N. D. Kvaltine, S. Lewis, K. Livingston, H. Y. Lu, I. J. D. MacGregor, Y. Mao, D. Martinez, M. Mayer, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, R. Nasseripour, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, E. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, N. A. Saylor, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, S. Tkachenko, M. Ungaro, B. Vernarsky, H. Voskanyan, E. Voutier, N. K. Walford, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao, I. Zonta

We report the measurement of near threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range $Q^2$ from 2 to 4.5 GeV$^2$ and $W$ from 1.08 to 1. Read More

2012Jun
Authors: CLAS Collaboration, I. Bedlinskiy, V. Kubarovsky, S. Niccolai, P. Stoler, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, R. P. Bennett, A. S. Biselli, C. Bookwalter, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, M. Garçon, N. Gevorgyan, K. L. Giovanetti, F. X. Girod, W. Gohn, R. W. Gothe, L. Graham, K. A. Griffioen, B. Guegan, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, D. Heddle, K. Hicks, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, N. D. Kvaltine, K. Livingston, H. Y. Lu, I. J. D. MacGregor, Y. Mao, N. Markov, D. Martinez, M. Mayer, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, N. Saylor, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, M. Ungaro, M. F. Vineyard, A. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao, I. Zonta

Exclusive $\pi^0$ electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in $Q^2$, $x_B$, $t$, and $\phi_\pi$, in the $Q^2$ range from 1. Read More

2012Jun
Authors: K. Park, M. Guidal, R. W. Gothe, J. M. Laget, M. Garçon, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, I. Bedlinsky, R. P. Bennett, A. S. Biselli, C. Bookwalter, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, A. Fradi, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, W. Gohn, E. Golovatch, L. Graham, K. A. Griffioen, B. Guegan, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, D. Heddle, K. Hicks, D. Ho, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. S. Jo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, K. Livingston, H. Y. Lu, I. J. D. MacGregor, Y. Mao, N. Markov, D. Martinez, M. Mayer, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, C. S. Nepali, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatie, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, P. Stoler, I. I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, A. Trivedi, M. Ungaro, B . Vernarsky, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao, I. Zonta

The exclusive electroproduction of $\pi^+$ above the resonance region was studied using the $\rm{CEBAF}$ Large Acceptance Spectrometer ($\rm{CLAS}$) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of $\rm{CLAS}$, together with the high luminosity, allowed us to measure the cross section for the $\gamma^* p \to n \pi^+$ process in 140 ($Q^2$, $x_B$, $t$) bins: $0.16Read More

2012Jan
Authors: L. El Fassi, L. Zana, K. Hafidi, M. Holtrop, B. Mustapha, W. K. Brooks, H. Hakobyan, X. Zheng, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. Anghinolfi, J. Arrington, H. Avakian, H. Baghdasaryan, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, C. Bookwalter, D. Branford, W. J. Briscoe, S. Bultmann, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, B. Dey, R. Dickson, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, M. Y. Gabrielyan, M. Garcon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, C. Hanretty, D. Heddle, K. Hicks, R. J. Holt, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, S. S. Jawalkar, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, V. Kuznetsov, J. M. Laget, H. Y. Lu, I. J. D. MacGregor, Y. Mao, N. Markov, M. Mayer, J. McAndrew, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, B. Moreno, H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, B. A. Raue, P. E. Reimer, G. Ricco, D. Rimal, M. Ripani, B. G. Ritchie, G. Rosner, P. Rossi, F. Sabatie, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, P. Stoler, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, D. J. Tedeschi, S. Tkachenko, M. Ungaro, B . Vernarsky, M. F. Vineyard, H. Voskanyan, E. Voutier, D. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, B. Zhao, Z. W. Zhao

We have measured the nuclear transparency of the incoherent diffractive $A(e,e'\rho^0)$ process in $^{12}$C and $^{56}$Fe targets relative to $^2$H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced $\rho^0$'s on a nucleus relative to deuterium, which is sensitive to $\rho A$ interaction, was studied as function of the coherence length ($l_c$), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared ($Q^2$). While the transparency for both $^{12}$C and $^{56}$Fe showed no $l_c$ dependence, a significant $Q^2$ dependence was measured, which is consistent with calculations that included the color transparency effects. Read More

2012Jan
Authors: Kijun Park, Ralf Gothe, Krishna Adhikari, Dasuni Adikaram-Mudiyanselage, Marco Anghinolfi, Hovhannes Baghdasaryan, Jacques Ball, Marco Battaglieri, Vitaly Baturin, Ivan Bedlinskiy, Robert Bennett, Angela Biselli, Craig Bookwalter, Sergey Boyarinov, Derek Branford, William Briscoe, William Brooks, Volker Burkert, Daniel Carman, Andrea Celentano, Shloka Chandavar, Gabriel Charles, Philip Cole, Marco Contalbrigo, Volker Crede, Annalisa D'Angelo, Aji Daniel, Natalya Dashyan, Raffaella De Vita, Enzo De Sanctis, Alexandre Deur, Chaden Djalali, David Doughty, Raphael Dupre, Ahmed El Alaoui, Lamiaa Elfassi, Paul Eugenio, Gleb Fedotov, Ahmed Fradi, Marianna Gabrielyan, Nerses Gevorgyan, Gerard Gilfoyle, Kevin Giovanetti, Francois-Xavier Girod, John Goetz, Wesley Gohn, Evgeny Golovach, Lewis Graham, Keith Griffioen, Michel Guidal, Lei Guo, Kawtar Hafidi, Hayk Hakobyan, Charles Hanretty, David Heddle, Kenneth Hicks, Maurik Holtrop, Yordanka Ilieva, David Ireland, Boris Ishkhanov, Evgeny Isupov, David Jenkins, Hyon-Suk Jo, Kyungseon Joo, Mahbubul Khandaker, Puneet Khetarpal, Andrey Kim, Wooyoung Kim, Andreas Klein, Franz Klein, A. Kubarovsky, Valery Kubarovsky, Sebastian Kuhn, Sergey Kuleshov, Nicholas Kvaltine, Kenneth Livingston, Haiyun Lu, Ian MacGregor, Nikolai Markov, Michael Mayer, Bryan McKinnon, Mac Mestayer, Curtis Meyer, Taisiya Mineeva, Marco Mirazita, Viktor Mokeev, Herve Moutarde, Edwin Munevar Espitia, Pawel Nadel-Turonski, Rakhsha Nasseripour, Silvia Niccolai, Gabriel Niculescu, Maria-Ioana Niculescu, Mikhail Osipenko, Alexander Ostrovidov, Michael Paolone, Luciano Pappalardo, Rafayel Paremuzyan, Seungkyung Park, Sergio Pereira, Evan Phelps, Silvia Pisano, Oleg Pogorelko, Sergey Pozdnyakov, John Price, Sebastien Procureur, Yelena Prok, Giovanni Ricco, Dipak Rimal, Marco Ripani, Barry Ritchie, Guenther Rosner, Patrizia Rossi, Franck Sabatie, Mukesh Saini, Carlos Salgado, Diane Schott, Reinhard Schumacher, Heghine Seraydaryan, Youri Sharabian, Elton Smith, Gregory Smith, Daniel Sober, Daria Sokhan, Samuel Stepanyan, Stepan Stepanyan, Paul Stoler, Igor Strakovski, Steffen Strauch, Mauro Taiuti, Wei Tang, Charles Taylor, Ye Tian, Svyatoslav Tkachenko, Arjun Trivedi, Maurizio Ungaro, Brian Vernarsky, Alexander Vlasov, Eric Voutier, Daniel Watts, Dennis Weygand, Michael Wood, Nicholas Zachariou, Bo Zhao, Zhiwen Zhao, N. Kalantarians, C. E. Hyde

We report the first extraction of the pion-nucleon multipoles near the production threshold for the $n\pi^+$ channel at relatively high momentum transfer ($Q^2$ up to 4.2 $\rm{GeV^2}$). The dominance of the s-wave transverse multipole ($E_{0+}$), expected in this region, allowed us to access the generalized form factor $G_1$ within the light-cone sum rule (LCSR) framework as well as the axial form factor $G_A$. Read More

2011Oct
Authors: N. Baillie, S. Tkachenko, J. Zhang, P. Bosted, S. Bultmann, M. E. Christy, H. Fenker, K. A. Griffioen, C. E. Keppel, S. E. Kuhn, W. Melnitchouk, V. Tvaskis, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. Anghinolfini, J. Arrington, H. Avakian, H. Baghdasaryan, M. Battaglieri, A. S. Biselli, 5 D. Branford, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, B. Dey, C. Djalali, G. Dodge, J. Domingo, D. Doughty, R. Dupre, D. Dutta, R. Ent, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Fradi, M. Y. Gabrielyan, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, W. Gohn, E. Golovatch, R. W. Gothe, L. Graham, B. Guegan, M. Guidal, N. Guler, L. Guo, K. Hafidi, D. Heddle, K. Hicks, M. Holtrop, E. Hungerford, C. E. Hyde, Y. Ilieva, D. G. Ireland, M. Ispiryan, E. L. Isupov, S. S. Jawalkar, H. S. Jo, N. Kalantarians, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, P. M. King, A. Klein, F. J. Klein, A. Klimenko, V. Kubarovsky, S. V. Kuleshov, N. D. Kvaltine, K. Livingston, H. Y. Lu, I . J . D. MacGregor, Y. Mao, N. Markov, B. McKinnon, T. Mineeva, B. Morrison, H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, S. Niccolai, I. Niculescu, G. Niculescu, M. Osipenko, A. I. Ostrovidov, L. Pappalardo, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, S. Pisano, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatie, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, Y. G. Sharabian, D. I. Sober, D. Sokhan, S. Stepanyan, S. S. Stepanyan, P. Stoler, S. Strauch, M. Taiuti, W. Tang, M. Ungaro, M. F. Vineyard, E. Voutier, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, L. Zana, B. Zhao

We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to < 100 MeV and their angles to < 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of Bjorken x for 0. Read More

2011Jun
Authors: M. Aghasyan, H. Avakian, P. Rossi, E. De Sanctis, D. Hasch, M. Mirazita, D. Adikaram, M. J. Amaryan, M. Anghinolfi, H. Baghdasaryan, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, R. P. Bennett, A. S. Biselli, D. Branford, W. J. Briscoe, S. Bültmann, V. D. Burkert, D. S. Carman, S. Chandavar, P. L. Cole, P. Collins, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, A. Deur, B. Dey, R. Dickson, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Fradi, M. Y. Gabrielyan, M. Garçon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, L. Graham, K. A. Griffioen, B. Guegan, M. Guidal, N. Guler, L. Guo, K. Hafidi, C. Hanretty, K. Hicks, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, E. L. Isupov, S. S. Jawalkar, D. Jenkins, H. S. Jo, K. Joo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kimy, A. Klein, F. J. Klein, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, V. Kuznetsov, N. D. Kvaltine, K. Livingston, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, J. McAndrew, B. McKinnon, C. A. Meyer, A. M. Micherdzinska, V. Mokeev, B. Moreno, H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, S. S. Stepanyan, S. Stepanyan, P. Stoler, I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, S. Tkachenko, M. Ungaro, H. Voskanyan, E. Voutier, D. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, L. Zana, J. Zhang, B. Zhao, Z. W. Zhao

We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial $\sin \phi_h$ amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle $\phi_h$ of the produced neutral pion. Read More