D. Paudyal

D. Paudyal
Are you D. Paudyal?

Claim your profile, edit publications, add additional information:

Contact Details

Name
D. Paudyal
Affiliation
Location

Pubs By Year

Pub Categories

 
Nuclear Experiment (9)
 
Physics - Materials Science (4)
 
High Energy Physics - Experiment (4)
 
Physics - Strongly Correlated Electrons (1)
 
High Energy Physics - Phenomenology (1)

Publications Authored By D. Paudyal

The double-polarization observable $E$ and the helicity-dependent cross sections $\sigma_{1/2}$ and $\sigma_{3/2}$ have been measured for the first time for single $\pi^{0}$ photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the $\pi^0$ meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Read More

Precise helicity-dependent cross sections and the double-polarization observable $E$ were measured for $\eta$ photoproduction from quasi-free protons and neutrons bound in the deuteron. The $\eta\rightarrow 2\gamma$ and $\eta\rightarrow 3\pi^0\rightarrow 6\gamma$ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. Read More

The double polarization observable $E$ and the helicity dependent cross sections $\sigma_{1/2}$ and $\sigma_{3/2}$ were measured for $\eta$ photoproduction from quasi-free protons and neutrons. The circularly polarized tagged photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a longitudinally polarized deuterated butanol target. The almost $4\pi$ detector setup of the Crystal Ball and TAPS is ideally suited to detect the recoil nucleons and the decay photons from $\eta\rightarrow 2\gamma$ and $\eta\rightarrow 3\pi^0$. Read More

The reactions $\gamma p\to \eta p$ and $\gamma p\to \eta' p$ have been measured from their thresholds up to the center-of-mass energy $W=1.96$GeV with the tagged-photon facilities at the Mainz Microtron, MAMI. Differential cross sections were obtained with unprecedented accuracy, providing fine energy binning and full production-angle coverage. Read More

The Dalitz decay pi^0 -> e^+e^-gamma has been measured in the gamma p -> pi^0 p reaction with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the pi^0 electromagnetic transition form factor, a_pi = 0.030+/-0. Read More

The scalar dipole polarizabilities, $\alpha_{E1}$ and $\beta_{M1}$, are fundamental properties related to the internal dynamics of the nucleon. The currently accepted values of the proton polarizabilities were determined by fitting to unpolarized proton Compton scattering cross section data. The measurement of the beam asymmetry $\Sigma_{3}$ in a certain kinematical range provides an alternative approach to the extraction of the scalar polarizabilities. Read More

The Dalitz decays eta -> e^+e^-g and omega -> pi^0 e^+e^- have been measured in the g p -> eta p and g p -> omega p reactions, respectively, with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the electromagnetic transition form factor of eta, Lambda^{-2}_eta=(1.97+/-0. Read More

High statistics measurements of the photon asymmetry $\mathrm{\Sigma}$ for the $\overrightarrow{\gamma}$p$\rightarrow\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. Read More

We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab-initio electronic structure theory which includes disordered local moments and strong $f$-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with pressure of +1.5 K kbar$^{-1}$ for GdCd confirmed by our experimental measurements of +1. Read More

Differential cross sections for the gamma p -> pi^0 p reaction have been measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C, up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a fine energy and angular binning, increase the existing quantity of pi^0 photoproduction data by ~47%. Read More

We report the synthesis and the magnetic properties of single crystalline CeRhAl$_4$Si$_2$ and CeIrAl$_4$Si$_2$ and their non magnetic La-analogs. The single crystals of these quaternary compounds were grown using Al-Si binary eutectic as flux. The anisotropic magnetic properties of the cerium compounds were explored in detail by means of magnetic susceptibility, isothermal magnetization, electrical resistivity, magnetoresistivity and heat capacity measurements. Read More

We have studied the problem of phase stability in Fe-Pt and Co-Pt alloy systems. We have used the orbital peeling technique in the conjunction of augmented space recursion based on the tight binding linear orbital method as the method for the calculation of pair interaction energies. In particular, we have generalized our earlier technique to take into account of magnetic effects for the cases where the magnetic transition is higher than the order disorder chemical transition temperature as in the case of Co$_3$Pt. Read More

We report here the preparation and measurements on the susceptibility, sound velocity and internal friction for Ni-Pt systems. We then compare these experimental results with the first principle theoretical predictions and show that there is reasonable agreement with experiment and theory. Read More

We show the differences in the stability of 3d-5d (NiPt and CuAu) and 3d-4d (NiPd and CuAg) alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections which lead to increase in the separation between s-d bands of 5d elements in these alloys. For the magnetic case we analyze the results in terms of splitting of majority and minority spin d-band centers of the 3d elements. Read More