D. I. Sober - The CLAS Collaboration

D. I. Sober
Are you D. I. Sober?

Claim your profile, edit publications, add additional information:

Contact Details

Name
D. I. Sober
Affiliation
The CLAS Collaboration
Location

Pubs By Year

External Links

Pub Categories

 
Nuclear Experiment (48)
 
High Energy Physics - Experiment (15)
 
Nuclear Theory (6)
 
High Energy Physics - Phenomenology (2)
 
Physics - Instrumentation and Detectors (2)

Publications Authored By D. I. Sober

2017May
Authors: D. Ho, P. Peng, C. Bass, P. Collins, A. D'Angelo, A. Deur, J. Fleming, C. Hanretty, T. Kageya, M. Khandaker, F. J. Klein, E. Klempt, V. Laine, M. M. Lowry, H. Lu, C. Nepali, V. A. Nikonov, T. O'Connell, A. M. Sandorfi, A. V. Sarantsev, R. A. Schumacher, I. I. Strakovsky, A. Švarc, N. K. Walford, X. Wei, C. S. Whisnant, R. L. Workman, I. Zonta, K. P. Adhikari, D. Adikaram, Z. Akbar, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, M. Bashkanov, M. Battaglieri, V. Batourine, I. Bedlinskiy, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, G. Charles, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, M. Contalbrigo, V. Crede, N. Dashyan, E. De Sanctis, R. De Vita, C. Djalali, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, A. Fradi, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, D. I. Glazier, C. Gleason, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, H. Hakobyan, N. Harrison, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, A. Kim, W. Kim, A. Klein, V. Kubarovsky, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, I . J . D. MacGregor, N. Markov, B. McKinnon, T. Mineeva, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, G. Murdoch, S. Niccolai, G. Niculescu, M. Osipenko, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, O. Pogorelko, J. W. Price, S. Procureur, D. Protopopescu, M. Ripani, D. Riser, B. G. Ritchie, A. Rizzo, G. Rosner, F. Sabatié, C. Salgado, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Strauch, Ye Tian, B. Torayev, M. Ungaro, H. Voskanyan, D. P. Watts, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao

We report the first beam-target double-polarization asymmetries in the $\gamma + n(p) \rightarrow \pi^- + p(p)$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $H\!D$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the {\it{E}} polarization observable for an effective neutron target. Read More

2017Jan
Authors: GlueX Collaboration, H. Al Ghoul, E. G. Anassontzis, A. Austregesilo, F. Barbosa, A. Barnes, T. D. Beattie, D. W. Bennett, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, W. K. Brooks, B. E. Cannon, O. Chernyshov, E. Chudakov, V. Crede, M. M. Dalton, A. Deur, S. Dobbs, A. Dolgolenko, M. Dugger, R. Dzhygadlo, H. Egiyan, P. Eugenio, C. Fanelli, A. M. Foda, J. Frye, S. Furletov, L. Gan, A. Gasparian, A. Gerasimov, N. Gevorgyan, K. Goetzen, V. S. Goryachev, L. Guo, H. Hakobyan, J. Hardin, A. Henderson, G. M. Huber, D. G. Ireland, M. M. Ito, N. S. Jarvis, R. T. Jones, V. Kakoyan, M. Kamel, F. J. Klein, R. Kliemt, C. Kourkoumeli, S. Kuleshov, I. Kuznetsov, M. Lara, I. Larin, D. Lawrence, W. I. Levine, K. Livingston, G. J. Lolos, V. Lyubovitskij, D. Mack, P. T. Mattione, V. Matveev, M. McCaughan, M. McCracken, W. McGinley, J. McIntyre, R. Mendez, C. A. Meyer, R. Miskimen, R. E. Mitchell, F. Mokaya, K. Moriya, F. Nerling, G. Nigmatkulov, N. Ochoa, A. I. Ostrovidov, Z. Papandreou, M. Patsyuk, R. Pedroni, M. R. Pennington, L. Pentchev, K. J. Peters, E. Pooser, B. Pratt, Y. Qiang, J. Reinhold, B. G. Ritchie, L. Robison, D. Romanov, C. Salgado, R. A. Schumacher, C. Schwarz, J. Schwiening, A. Yu. Semenov, I. A. Semenova, K. K. Seth, M. R. Shepherd, E. S. Smith, D. I. Sober, A. Somov, S. Somov, O. Soto, N. Sparks, M. J. Staib, J. R. Stevens, I. I. Strakovsky, A. Subedi, V. Tarasov, S. Taylor, A. Teymurazyan, I. Tolstukhin, A. Tomaradze, A. Toro, A. Tsaris, G. Vasileiadis, I. Vega, N. K. Walford, D. Werthmuller, T. Whitlatch, M. Williams, E. Wolin, T. Xiao, J. Zarling, Z. Zhang, B. Zihlmann, V. Mathieu, J. Nys

We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models. Read More

2015Dec

The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of $\pi^{0}$, $\eta$ and $\omega$ mesons. Read More

Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of $\pi^0\pi^0$ pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerator facility in Mainz using the Glasgow photon tagging spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered electron beams of 1508 and 1557~MeV, which produced bremsstrahlung in thin radiator foils. Read More

Photoproduction of $\pi\eta$-pairs from nucleons has been investigated from threshold up to incident photon energies of $\approx$~1.4~GeV. The quasi-free reactions $\gamma p\rightarrow p\pi^0\eta$, $\gamma n\rightarrow n\pi^0\eta$, $\gamma p\rightarrow n\pi^+\eta$, and $\gamma n\rightarrow p\pi^-\eta$ were for the first time measured from nucleons bound in the deuteron. Read More

2015Jul
Authors: I. Senderovich, B. T. Morrison, M. Dugger, B. G. Ritchie, E. Pasyuk, R. Tucker, J. Brock, C. Carlin, C. D. Keith, D. G. Meekins, M. L. Seely, D. R, M. D, P. Collins, K. P. Adhikari, D. Adikaram, Z. Akbar, M. D. Anderson, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, A. Fradi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, B. Garillon, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. -X. Girod, D. I. Glazier, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, F. J. Klein, V. Kubarovsky, M. C. Kunkel, P. Lenisa, K. Livingston, H. Y. Lu, I. J. D. MacGregor, P. Mattione, B. McKinnon, C. A. Meyer, T. Mineeva, V. Mokeev, R. A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, K. Park, S. Park, P. Peng, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, A. Simonyan, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Stepanyan, P. Stoler, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

Results are presented for the first measurement of the double-polarization helicity asymmetry E for the $\eta$ photoproduction reaction $\gamma p \rightarrow \eta p$. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. Read More

2015Mar
Authors: Nicholas Zachariou, Yordanka Ilieva, Nikolay Ya. Ivanov, Misak M Sargsian, Robert Avakian, Gerald Feldman, Pawel Nadel-Turonski, K. P. Adhikari, D. Adikaram, M. D. Anderson, S. Anefalos Pereira, H. Avakian, R. A. Badui, N. A. Baltzell, M. Battaglieri, V. Baturin, I. Bedlinskiy, A. S. Biselli, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, T. A. Forest, A. Fradi, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, D. I. Glazier, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, K. Hafidi, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, W. Kim, F. J. Klein, V. Kubarovsky, P. Lenisa, K. Livingston, H. Y. Lu, I . J . D. MacGregor, N. Markov, P. T. Mattione, B. McKinnon, T. Mineeva, M. Mirazita, V. I. Mokeeev, R. A. Montgomery, H. Moutarde, C. Munoz Camacho, L. A. Net, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, W. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, I. Senderovich, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. Watts, X. Wei, M. H. Wood, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, for the CLAS collaboration

The beam-spin asymmetry, $\Sigma$, for the reaction $\gamma d\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\theta_{c. Read More

2015Mar
Authors: S. Strauch1, W. J. Briscoe2, M. Döring3, E. Klempt4, V. A. Nikonov5, E. Pasyuk6, D. Rönchen7, A. V. Sarantsev8, I. Strakovsky9, R. Workman10, K. P. Adhikari11, D. Adikaram12, M. D. Anderson13, S. Anefalos Pereira14, A. V. Anisovich15, R. A. Badui16, J. Ball17, V. Batourine18, M. Battaglieri19, I. Bedlinskiy20, N. Benmouna21, A. S. Biselli22, J. Brock23, W. K. Brooks24, V. D. Burkert25, T. Cao26, C. Carlin27, D. S. Carman28, A. Celentano29, S. Chandavar30, G. Charles31, L. Colaneri32, P. L. Cole33, N. Compton34, M. Contalbrigo35, O. Cortes36, V. Crede37, N. Dashyan38, A. D'Angelo39, R. De Vita40, E. De Sanctis41, A. Deur42, C. Djalali43, M. Dugger44, R. Dupre45, H. Egiyan46, A. El Alaoui47, L. El Fassi48, L. Elouadrhiri49, P. Eugenio50, G. Fedotov51, S. Fegan52, A. Filippi53, J. A. Fleming54, T. A. Forest55, A. Fradi56, N. Gevorgyan57, Y. Ghandilyan58, K. L. Giovanetti59, F. X. Girod60, D. I. Glazier61, W. Gohn62, E. Golovatch63, R. W. Gothe64, K. A. Griffioen65, M. Guidal66, L. Guo67, K. Hafidi68, H. Hakobyan69, C. Hanretty70, N. Harrison71, M. Hattawy72, K. Hicks73, D. Ho74, M. Holtrop75, S. M. Hughes76, Y. Ilieva77, D. G. Ireland78, B. S. Ishkhanov79, E. L. Isupov80, D. Jenkins81, H. Jiang82, H. S. Jo83, K. Joo84, S. Joosten85, C. D. Keith86, D. Keller87, G. Khachatryan88, M. Khandaker89, A. Kim90, W. Kim91, A. Klein92, F. J. Klein93, V. Kubarovsky94, S. E. Kuhn95, P. Lenisa96, K. Livingston97, H. Y. Lu98, I . J . D. MacGregor99, N. Markov100, B. McKinnon101, D. G. Meekins102, C. A. Meyer103, V. Mokeev104, R. A. Montgomery105, C. I. Moody106, H. Moutarde107, A Movsisyan108, E. Munevar109, C. Munoz Camacho110, P. Nadel-Turonski111, L. A. Net112, S. Niccolai113, G. Niculescu114, I. Niculescu115, M. Osipenko116, A. I. Ostrovidov117, K. Park118, P. Peng119, W. Phelps120, J. J. Phillips121, S. Pisano122, O. Pogorelko123, S. Pozdniakov124, J. W. Price125, S. Procureur126, Y. Prok127, D. Protopopescu128, A. J. R. Puckett129, B. A. Raue130, M. Ripani131, B. G. Ritchie132, A. Rizzo133, G. Rosner134, P. Roy135, F. Sabatié136, C. Salgado137, D. Schott138, R. A. Schumacher139, E. Seder140, M. L. Seely141, I Senderovich142, Y. G. Sharabian143, A. Simonyan144, Iu. Skorodumina145, G. D. Smith146, D. I. Sober147, D. Sokhan148, N. Sparveris149, P. Stoler150, S. Stepanyan151, V. Sytnik152, M. Taiuti153, Ye Tian154, A. Trivedi155, R. Tucker156, M. Ungaro157, H. Voskanyan158, E. Voutier159, N. K. Walford160, D. P. Watts161, X. Wei162, M. H. Wood163, N. Zachariou164, L. Zana165, J. Zhang166, Z. W. Zhao167, I. Zonta168
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration, 151The CLAS Collaboration, 152The CLAS Collaboration, 153The CLAS Collaboration, 154The CLAS Collaboration, 155The CLAS Collaboration, 156The CLAS Collaboration, 157The CLAS Collaboration, 158The CLAS Collaboration, 159The CLAS Collaboration, 160The CLAS Collaboration, 161The CLAS Collaboration, 162The CLAS Collaboration, 163The CLAS Collaboration, 164The CLAS Collaboration, 165The CLAS Collaboration, 166The CLAS Collaboration, 167The CLAS Collaboration, 168The CLAS Collaboration

First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction $\vec \gamma \vec p \to \pi^+n$, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2. Read More

2014Nov
Authors: D. Adikaram, D. Rimal, L. B. Weinstein, B. Raue, P. Khetarpal, R. P. Bennett, J. Arrington, W. K. Brooks, K. P. Adhikari, A. V. Afanasev, M. J. Amaryan, M. D. Anderson, J. Ball, M. Battaglieri, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, A. Fradi, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, K. Hicks, M. Holtrop, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, K. Joo, S. Joosten, M. Khandaker, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, B. McKinnon, M. D. Mestayer, C. A. Meyer, M. Mirazita, V. Mokeev, R. A. Montgomery, C. I. Moody, H. Moutarde, A Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, F. Sabatié, D. Schott, R. A. Schumacher, Y. G. Sharabian, A. Simonyan, I. Skorodumina, E. S. Smith, G. D. Smith, D. I. Sober, N. Sparveris, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, Ye Tian, A. Trivedi, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, The CLAS Collaboration

There is a significant discrepancy between the values of the proton electric form factor, $G_E^p$, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of $G_E^p$ from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. Read More

We propose to enhance the kaon identification capabilities of the GlueX detector by constructing an FDIRC (Focusing Detection of Internally Reflected Cherenkov) detector utilizing the decommissioned BaBar DIRC components. The GlueX FDIRC would significantly enhance the GlueX physics program by allowing one to search for and study hybrid mesons decaying into kaon final states. Such systematic studies of kaon final states are essential for inferring the quark flavor content of hybrid and conventional mesons. Read More

Differential and total cross sections for the quasifree reactions $\gamma p\rightarrow\eta p$ and $\gamma n\rightarrow\eta n$ have been determined at the MAMI-C electron accelerator using a liquid deuterium target. Photons were produced via bremsstrahlung from the 1.5 GeV incident electron beam and energy-tagged with the Glasgow photon tagger. Read More

2014Jun
Authors: M. Gabrielyan, B. A. Raue, D. S. Carman, K. Park, K. P. Adhikari, D. Adikaram, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Baturin, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. DAngelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, B. Garillon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, D. Keller, M. Khandaker, W. Kim, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, P. Lenisa, W. I. Levine, K. Livingston, I. J. D. MacGregor, M. Mayer, B. McKinnon, C. A. Meyer, M. D. Mestayer, M. Mirazita, V. Mokeev, C. I. Moody, H. Moutarde, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, M. Osipenko, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, P. Peng, W. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, D. Rimal, M. Ripani, A. Rizzo, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, A. Simonyan, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sytnik, W. Tang, M. Ungaro, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, L. B. Weinstein, N. Zachariou, L. Zana, J. Zhang

We have measured the induced polarization of the ${\Lambda}(1116)$ in the reaction $ep\rightarrow e'K^+{\Lambda}$, detecting the scattered $e'$ and $K^+$ in the final state along with the proton from the decay $\Lambda\rightarrow p\pi^-$.The present study used the CEBAF Large Acceptance Spectrometer (CLAS), which allowed for a large kinematic acceptance in invariant energy $W$ ($1.6\leq W \leq 2. Read More

2014May
Authors: I. Bedlinskiy1, V. Kubarovsky2, S. Niccolai3, P. Stoler4, K. P. Adhikari5, M. D. Anderson6, S. Anefalos Pereira7, H. Avakian8, J. Ball9, N. A. Baltzell10, M. Battaglieri11, V. Batourine12, A. S. Biselli13, S. Boiarinov14, J. Bono15, W. J. Briscoe16, W. K. Brooks17, V. D. Burkert18, D. S. Carman19, A. Celentano20, S. Chandavar21, L. Colaneri22, P. L. Cole23, M. Contalbrigo24, O. Cortes25, V. Crede26, A. D'Angelo27, N. Dashyan28, R. De Vita29, E. De Sanctis30, A. Deur31, C. Djalali32, D. Doughty33, R. Dupre34, H. Egiyan35, A. El Alaoui36, L. El Fassi37, L. Elouadrhiri38, P. Eugenio39, G. Fedotov40, S. Fegan41, J. A. Fleming42, T. A. Forest43, B. Garillon44, M. Garçon45, G. Gavalian46, N. Gevorgyan47, Y. Ghandilyan48, G. P. Gilfoyle49, K. L. Giovanetti50, F. X. Girod51, E. Golovatch52, R. W. Gothe53, K. A. Griffioen54, B. Guegan55, L. Guo56, K. Hafidi57, H. Hakobyan58, N. Harrison59, M. Hattawy60, K. Hicks61, M. Holtrop62, D. G. Ireland63, B. S. Ishkhanov64, E. L. Isupov65, D. Jenkins66, H. S. Jo67, K. Joo68, D. Keller69, M. Khandaker70, A. Kim71, W. Kim72, A. Klein73, F. J. Klein74, S. Koirala75, S. E. Kuhn76, S. V. Kuleshov77, P. Lenisa78, W. I. Levine79, K. Livingston80, H. Y. Lu81, I . J . D. MacGregor82, N. Markov83, M. Mayer84, B. McKinnon85, M. Mirazita86, V. Mokeev87, R. A. Montgomery88, C. I. Moody89, H. Moutarde90, A Movsisyan91, C. Munoz Camacho92, P. Nadel-Turonski93, I. Niculescu94, M. Osipenko95, A. I. Ostrovidov96, L. L. Pappalardo97, K. Park98, S. Park99, E. Pasyuk100, E. Phelps101, W. Phelps102, J. J. Phillips103, S. Pisano104, O. Pogorelko105, J. W. Price106, Y. Prok107, D. Protopopescu108, S. Procureur109, A. J. R. Puckett110, B. A. Raue111, M. Ripani112, B. G. Ritchie113, A. Rizzo114, P. Rossi115, P. Roy116, F. Sabatié117, C. Salgado118, D. Schott119, R. A. Schumacher120, E. Seder121, I. Senderovich122, Y. G. Sharabian123, A. Simonyan124, G. D. Smith125, D. I. Sober126, D. Sokhan127, S. S. Stepanyan128, S. Strauch129, V. Sytnik130, W. Tang131, Ye Tian132, M. Ungaro133, A. V. Vlassov134, H. Voskanyan135, E. Voutier136, N. K. Walford137, D. Watts138, X. Wei139, L. B. Weinstein140, M. Yurov141, N. Zachariou142, L. Zana143, J. Zhang144, Z. W. Zhao145, I. Zonta146, for the CLAS Collaboration
Affiliations: 1Institute of Theoretical and Experimental Physics, 2Thomas Jefferson National Accelerator Facility, 3Institut de Physique Nucléaire ORSAY, 4Rensselaer Polytechnic Institute, 5Old Dominion University, 6University of Glasgow, 7INFN, 8Thomas Jefferson National Accelerator Facility, 9CEA, 10Argonne National Laboratory, 11INFN, 12Thomas Jefferson National Accelerator Facility, 13Thomas Jefferson National Accelerator Facility, 14Thomas Jefferson National Accelerator Facility, 15Florida International University, 16The George Washington University, 17Universidad Técnica Federico Santa María, 18Thomas Jefferson National Accelerator Facility, 19Thomas Jefferson National Accelerator Facility, 20INFN, 21Ohio University, 22INFN, 23Idaho State University, 24INFN, 25Idaho State University, 26Florida State University, 27INFN, 28Yerevan Physics Institute, 29INFN, 30INFN, 31Thomas Jefferson National Accelerator Facility, 32University of South Carolina, 33Christopher Newport University, 34Institut de Physique Nucléaire ORSAY, 35Thomas Jefferson National Accelerator Facility, 36Argonne National Laboratory, 37Old Dominion University, 38Thomas Jefferson National Accelerator Facility, 39Florida State University, 40University of South Carolina, 41INFN, 42Edinburgh University, 43Idaho State University, 44Institut de Physique Nucléaire ORSAY, 45CEA, 46Old Dominion University, 47Yerevan Physics Institute, 48Yerevan Physics Institute, 49University of Richmond, 50James Madison University, 51Thomas Jefferson National Accelerator Facility, 52Skobeltsyn Institute of Nuclear Physics, 53University of South Carolina, 54Institut de Physique Nucléaire ORSAY, 55Institut de Physique Nucléaire ORSAY, 56Florida International University, 57Argonne National Laboratory, 58Universidad Técnica Federico Santa María, 59University of Connecticut, 60Institut de Physique Nucléaire ORSAY, 61Ohio University, 62University of New Hampshire, 63University of Glasgow, 64Skobeltsyn Institute of Nuclear Physics, 65Skobeltsyn Institute of Nuclear Physics, 66Institut de Physique Nucléaire ORSAY, 67Institut de Physique Nucléaire ORSAY, 68University of Connecticut, 69University of Virginia, 70Idaho State University, 71University of Connecticut, 72Kyungpook National University, 73Old Dominion University, 74Catholic University of America, 75Old Dominion University, 76Old Dominion University, 77Universidad Técnica Federico Santa María, 78INFN, 79Carnegie Mellon University, 80University of Glasgow, 81University of South Carolina, 82University of Glasgow, 83University of Connecticut, 84Old Dominion University, 85University of Glasgow, 86INFN, 87Thomas Jefferson National Accelerator Facility, 88INFN, 89Argonne National Laboratory, 90CEA, 91INFN, 92Institut de Physique Nucléaire ORSAY, 93Thomas Jefferson National Accelerator Facility, 94James Madison University, 95INFN, 96Florida State University, 97INFN, 98Thomas Jefferson National Accelerator Facility, 99Florida State University, 100Thomas Jefferson National Accelerator Facility, 101University of South Carolina, 102Florida International University, 103University of Glasgow, 104INFN, 105Institute of Theoretical and Experimental Physics, 106California State University, 107Old Dominion University, 108University of Glasgow, 109CEA, 110University of Connecticut, 111Florida International University, 112INFN, 113Arizona State University, 114INFN, 115INFN, 116Florida State University, 117CEA, 118Norfolk State University, 119The George Washington University, 120Carnegie Mellon University, 121University of Connecticut, 122Arizona State University, 123Thomas Jefferson National Accelerator Facility, 124Yerevan Physics Institute, 125Edinburgh University, 126Catholic University of America, 127University of Glasgow, 128Kyungpook National University, 129University of South Carolina, 130Universidad Técnica Federico Santa María, 131Ohio University, 132University of South Carolina, 133Thomas Jefferson National Accelerator Facility, 134Institute of Theoretical and Experimental Physics, 135Yerevan Physics Institute, 136LPSC, 137Catholic University of America, 138University of Glasgow, 139Thomas Jefferson National Accelerator Facility, 140Old Dominion University, 141University of Virginia, 142University of South Carolina, 143Edinburgh University, 144Thomas Jefferson National Accelerator Facility, 145University of Virginia, 146INFN

Exclusive neutral-pion electroproduction ($ep\to e^\prime p^\prime \pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\pi$ and structure functions $\sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. Read More

2014Apr
Authors: Y. Prok, P. Bosted, N. Kvaltine, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. D. Anderson, S. Anefalos Pereira, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, A. S. Biselli, J. Bono, W. J. Briscoe, J. Brock, W. K. Brooks, S. Bültmann, V. D. Burkert, C. Carlin, D. S. Carman, A. Celentano, S. Chandavar, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, D. Crabb, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, T. A. Forest, M. Garcon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, K. L. Giovanetti, J. T. Goetz, W. Gohn, R. W. Gothe, K. A. Griffioen, B. Guegan, N. Guler, K. Haffidi, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, S. Jawalkar, X. Jiang, H. S. Jo, K. Joo, N. Kalantarians, C. Keith, D. Keller, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, P. Lenisa, K. Livingston, H. Y. Lu, I . J. D. MacGregor, N. Markov, M. Mayee, B. McKinnon, D. Meekins, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, H. Moutarde, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, P. Peng, J. J. Phillips, J. Pierce, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, D. Rimal, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, Y. G. Sharabian, A. Simonyan, C. Smith, G. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sytnik, M. Taiuti, W. Tang, S. Tkachenko, M. Ungaro, B . Vernarsky, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D . P. Watts, L. B. Weinstein, N. Zachariou, L. Zana, J. Zhang, B. Zhao, Z. W. Zhao, I. Zonta, for the CLAS collaboration

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Read More

Precise angular distributions have been measured for the first time for the photoproduction of $\pi^{0}$-mesons off neutrons bound in the deuteron. The effects from nuclear Fermi motion have been eliminated by a complete kinematic reconstruction of the final state. The influence of final-state-interaction effects has been estimated by a comparison of the reaction cross section for quasi-free protons bound in the deuteron to the results for free protons and then applied as a correction to the quasi-free neutron data. Read More

Beam-helicity asymmetries have been measured at the MAMI accelerator in Mainz for the photoproduction of mixed-charge pion pairs in the reactions $\boldsymbol{\gamma}p\rightarrow n\pi^0\pi^+$ off free protons and $\boldsymbol{\gamma}d\rightarrow (p)p\pi^0\pi^-$ and $\boldsymbol{\gamma}d\rightarrow (n)n\pi^0\pi^+$ off quasi-free nucleons bound in the deuteron for incident photon energies up to 1.4 GeV. Circularly polarized photons were produced from bremsstrahlung of longitudinally polarized electrons and tagged with the Glasgow-Mainz magnetic spectrometer. Read More

2014Feb
Authors: S. Tkachenko1, N. Baillie2, S. E. Kuhn3, J. Zhang4, J. Arrington5, P. Bosted6, S. Bültmann7, M. E. Christy8, D. Dutta9, R. Ent10, H. Fenker11, K. A. Griffioen12, M. Ispiryan13, N. Kalantarians14, C. E. Keppel15, W. Melnitchouk16, V. Tvaskis17, K. P. Adhikari18, M. Aghasyan19, M. J. Amaryan20, S. Anefalos Pereira21, H. Avakian22, J. Ball23, N. A. Baltzell24, M. Battaglieri25, I. Bedlinskiy26, A. S. Biselli27, W. J. Briscoe28, W. K. Brooks29, V. D. Burkert30, D. S. Carman31, A. Celentano32, S. Chandavar33, G. Charles34, P. L. Cole35, M. Contalbrigo36, O. Cortes37, V. Crede38, A. D'Angelo39, N. Dashyan40, R. De Vita41, E. De Sanctis42, A. Deur43, C. Djalali44, G. E. Dodge45, D. Doughty46, R. Dupre47, H. Egiyan48, A. El Alaoui49, L. El Fassi50, L. Elouadrhiri51, P. Eugenio52, G. Fedotov53, J. A. Fleming54, B. Garillon55, N. Gevorgyan56, Y. Ghandilyan57, G. P. Gilfoyle58, K. L. Giovanetti59, F. X. Girod60, J. T. Goetz61, E. Golovatch62, R. W. Gothe63, M. Guidal64, L. Guo65, K. Hafidi66, H. Hakobyan67, C. Hanretty68, N. Harrison69, M. Hattawy70, K. Hicks71, D. Ho72, M. Holtrop73, C . E. Hyde74, Y. Ilieva75, D. G. Ireland76, B. S. Ishkhanov77, H. S. Jo78, D. Keller79, M. Khandaker80, A. Kim81, W. Kim82, P. M. King83, A. Klein84, F. J. Klein85, S. Koirala86, V. Kubarovsky87, S. V. Kuleshov88, P. Lenisa89, S. Lewis90, K. Livingston91, H. Lu92, M. MacCormick93, I. J. D. MacGregor94, N. Markov95, M. Mayer96, B. McKinnon97, T. Mineeva98, M. Mirazita99, V. Mokeev100, R. A. Montgomery101, H. Moutarde102, C. Munoz Camacho103, P. Nadel-Turonski104, S. Niccolai105, G. Niculescu106, I. Niculescu107, M. Osipenko108, L. L. Pappalardo109, R. Paremuzyan110, K. Park111, E. Pasyuk112, J. J. Phillips113, S. Pisano114, O. Pogorelko115, S. Pozdniakov116, J. W. Price117, S. Procureur118, D. Protopopescu119, A. J . R. Puckett120, D. Rimal121, M. Ripani122, A. Rizzo123, G. Rosner124, P. Rossi125, P. Roy126, F. Sabatié127, D. Schott128, R. A. Schumacher129, E. Seder130, I. Senderovich131, Y. G. Sharabian132, A. Simonyan133, G. D. Smith134, D. I. Sober135, D. Sokhan136, S. Stepanyan137, S. S. Stepanyan138, S. Strauch139, W. Tang140, M. Ungaro141, A. V. Vlassov142, H. Voskanyan143, E. Voutier144, N. K. Walford145, D. Watts146, X. Wei147, L. B. Weinstein148, M. H. Wood149, L. Zana150, I. Zonta151
Affiliations: 1The CLAS collaboration, 2The CLAS collaboration, 3The CLAS collaboration, 4The CLAS collaboration, 5The CLAS collaboration, 6The CLAS collaboration, 7The CLAS collaboration, 8The CLAS collaboration, 9The CLAS collaboration, 10The CLAS collaboration, 11The CLAS collaboration, 12The CLAS collaboration, 13The CLAS collaboration, 14The CLAS collaboration, 15The CLAS collaboration, 16The CLAS collaboration, 17The CLAS collaboration, 18The CLAS collaboration, 19The CLAS collaboration, 20The CLAS collaboration, 21The CLAS collaboration, 22The CLAS collaboration, 23The CLAS collaboration, 24The CLAS collaboration, 25The CLAS collaboration, 26The CLAS collaboration, 27The CLAS collaboration, 28The CLAS collaboration, 29The CLAS collaboration, 30The CLAS collaboration, 31The CLAS collaboration, 32The CLAS collaboration, 33The CLAS collaboration, 34The CLAS collaboration, 35The CLAS collaboration, 36The CLAS collaboration, 37The CLAS collaboration, 38The CLAS collaboration, 39The CLAS collaboration, 40The CLAS collaboration, 41The CLAS collaboration, 42The CLAS collaboration, 43The CLAS collaboration, 44The CLAS collaboration, 45The CLAS collaboration, 46The CLAS collaboration, 47The CLAS collaboration, 48The CLAS collaboration, 49The CLAS collaboration, 50The CLAS collaboration, 51The CLAS collaboration, 52The CLAS collaboration, 53The CLAS collaboration, 54The CLAS collaboration, 55The CLAS collaboration, 56The CLAS collaboration, 57The CLAS collaboration, 58The CLAS collaboration, 59The CLAS collaboration, 60The CLAS collaboration, 61The CLAS collaboration, 62The CLAS collaboration, 63The CLAS collaboration, 64The CLAS collaboration, 65The CLAS collaboration, 66The CLAS collaboration, 67The CLAS collaboration, 68The CLAS collaboration, 69The CLAS collaboration, 70The CLAS collaboration, 71The CLAS collaboration, 72The CLAS collaboration, 73The CLAS collaboration, 74The CLAS collaboration, 75The CLAS collaboration, 76The CLAS collaboration, 77The CLAS collaboration, 78The CLAS collaboration, 79The CLAS collaboration, 80The CLAS collaboration, 81The CLAS collaboration, 82The CLAS collaboration, 83The CLAS collaboration, 84The CLAS collaboration, 85The CLAS collaboration, 86The CLAS collaboration, 87The CLAS collaboration, 88The CLAS collaboration, 89The CLAS collaboration, 90The CLAS collaboration, 91The CLAS collaboration, 92The CLAS collaboration, 93The CLAS collaboration, 94The CLAS collaboration, 95The CLAS collaboration, 96The CLAS collaboration, 97The CLAS collaboration, 98The CLAS collaboration, 99The CLAS collaboration, 100The CLAS collaboration, 101The CLAS collaboration, 102The CLAS collaboration, 103The CLAS collaboration, 104The CLAS collaboration, 105The CLAS collaboration, 106The CLAS collaboration, 107The CLAS collaboration, 108The CLAS collaboration, 109The CLAS collaboration, 110The CLAS collaboration, 111The CLAS collaboration, 112The CLAS collaboration, 113The CLAS collaboration, 114The CLAS collaboration, 115The CLAS collaboration, 116The CLAS collaboration, 117The CLAS collaboration, 118The CLAS collaboration, 119The CLAS collaboration, 120The CLAS collaboration, 121The CLAS collaboration, 122The CLAS collaboration, 123The CLAS collaboration, 124The CLAS collaboration, 125The CLAS collaboration, 126The CLAS collaboration, 127The CLAS collaboration, 128The CLAS collaboration, 129The CLAS collaboration, 130The CLAS collaboration, 131The CLAS collaboration, 132The CLAS collaboration, 133The CLAS collaboration, 134The CLAS collaboration, 135The CLAS collaboration, 136The CLAS collaboration, 137The CLAS collaboration, 138The CLAS collaboration, 139The CLAS collaboration, 140The CLAS collaboration, 141The CLAS collaboration, 142The CLAS collaboration, 143The CLAS collaboration, 144The CLAS collaboration, 145The CLAS collaboration, 146The CLAS collaboration, 147The CLAS collaboration, 148The CLAS collaboration, 149The CLAS collaboration, 150The CLAS collaboration, 151The CLAS collaboration

Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. Read More

Information on the size and shape of the neutron skin on $^{208}$Pb has been extracted from coherent pion photoproduction cross sections measured using the Crystal Ball together with the Glasgow tagger at the MAMI electron beam facility. On exploitation of an interpolated fit of a theoretical model to the measured cross sections the half-height radius and diffuseness of the neutron distribution are found to be 6.70$\pm 0. Read More

We report the first large-acceptance measurement of polarization transfer from a polarized photon beam to a recoiling nucleon, pioneering a novel polarimetry technique with wide application to future nuclear and hadronic physics experiments. The commissioning measurement of polarization transfer in the $^{1}H$($\vec{\gamma}$,$\vec{p}$)$\pi^{0}$ reaction in the range $0.4Read More

2013Sep
Affiliations: 1A2 Collaboration at MAMI, 2A2 Collaboration at MAMI, 3A2 Collaboration at MAMI, 4A2 Collaboration at MAMI, 5A2 Collaboration at MAMI, 6A2 Collaboration at MAMI, 7A2 Collaboration at MAMI, 8A2 Collaboration at MAMI, 9A2 Collaboration at MAMI, 10A2 Collaboration at MAMI, 11A2 Collaboration at MAMI, 12A2 Collaboration at MAMI, 13A2 Collaboration at MAMI, 14A2 Collaboration at MAMI, 15A2 Collaboration at MAMI, 16A2 Collaboration at MAMI, 17A2 Collaboration at MAMI, 18A2 Collaboration at MAMI, 19A2 Collaboration at MAMI, 20A2 Collaboration at MAMI, 21A2 Collaboration at MAMI, 22A2 Collaboration at MAMI, 23A2 Collaboration at MAMI, 24A2 Collaboration at MAMI, 25A2 Collaboration at MAMI, 26A2 Collaboration at MAMI, 27A2 Collaboration at MAMI, 28A2 Collaboration at MAMI, 29A2 Collaboration at MAMI, 30A2 Collaboration at MAMI, 31A2 Collaboration at MAMI, 32A2 Collaboration at MAMI, 33A2 Collaboration at MAMI, 34A2 Collaboration at MAMI, 35A2 Collaboration at MAMI, 36A2 Collaboration at MAMI, 37A2 Collaboration at MAMI, 38A2 Collaboration at MAMI, 39A2 Collaboration at MAMI, 40A2 Collaboration at MAMI, 41A2 Collaboration at MAMI, 42A2 Collaboration at MAMI, 43A2 Collaboration at MAMI, 44A2 Collaboration at MAMI, 45A2 Collaboration at MAMI, 46A2 Collaboration at MAMI, 47A2 Collaboration at MAMI, 48A2 Collaboration at MAMI, 49A2 Collaboration at MAMI, 50A2 Collaboration at MAMI, 51A2 Collaboration at MAMI, 52A2 Collaboration at MAMI, 53A2 Collaboration at MAMI, 54A2 Collaboration at MAMI, 55A2 Collaboration at MAMI, 56A2 Collaboration at MAMI, 57A2 Collaboration at MAMI, 58A2 Collaboration at MAMI, 59A2 Collaboration at MAMI, 60A2 Collaboration at MAMI, 61A2 Collaboration at MAMI, 62A2 Collaboration at MAMI, 63A2 Collaboration at MAMI, 64A2 Collaboration at MAMI, 65A2 Collaboration at MAMI, 66A2 Collaboration at MAMI, 67A2 Collaboration at MAMI, 68A2 Collaboration at MAMI, 69A2 Collaboration at MAMI, 70A2 Collaboration at MAMI, 71A2 Collaboration at MAMI, 72A2 Collaboration at MAMI, 73A2 Collaboration at MAMI, 74A2 Collaboration at MAMI, 75A2 Collaboration at MAMI, 76A2 Collaboration at MAMI

The Dalitz decay eta -> e^+ e^- gamma has been measured in the gamma p -> eta p reaction with the Crystal Ball and TAPS multiphoton spectrometers, together with the photon tagging facility at the Mainz Microtron MAMI. The experimental statistic used in this work is one order of magnitude greater than in any previous measurement of eta -> e^+ e^- gamma. The value obtained for the slope parameter 1/Lambda^2 of the eta transition form factor, 1/Lambda^2 = (1. Read More

Measurements of $\gamma p \rightarrow K^{+} \Lambda$ and $\gamma p \rightarrow K^{+} \Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. Read More

2013Jun
Authors: M. Moteabbed, M. Niroula, B. A. Raue, L. B. Weinstein, D. Adikaram, J. Arrington, W. K. Brooks, J. Lachniet, Dipak Rimal, M. Ungaro, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, R. P. Bennett, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, P. L. Cole, P. Collins, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, N. Guler, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, D. Ho, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, D. Keller, M. Khandaker, A. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, S. Lewis, H. Y. Lu, M. MacCormick, I . J . D. MacGregor, D. Martinez, M. Mayer, B. McKinnon, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, K. Moriya, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, R. Nasseripour, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, M. Ripani, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. Stepanyan, S. Strauch, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, H. Voskanyan, E. Voutier, N. K. Walford, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct $e^\pm p$ comparisons, which has the potential to make precise measurements over a broad range in $Q^2$ and scattering angles. Read More

2013Jun
Affiliations: 1A2 Collaboration at MAMI, 2A2 Collaboration at MAMI, 3A2 Collaboration at MAMI, 4A2 Collaboration at MAMI, 5A2 Collaboration at MAMI, 6A2 Collaboration at MAMI, 7A2 Collaboration at MAMI, 8A2 Collaboration at MAMI, 9A2 Collaboration at MAMI, 10A2 Collaboration at MAMI, 11A2 Collaboration at MAMI, 12A2 Collaboration at MAMI, 13A2 Collaboration at MAMI, 14A2 Collaboration at MAMI, 15A2 Collaboration at MAMI, 16A2 Collaboration at MAMI, 17A2 Collaboration at MAMI, 18A2 Collaboration at MAMI, 19A2 Collaboration at MAMI, 20A2 Collaboration at MAMI, 21A2 Collaboration at MAMI, 22A2 Collaboration at MAMI, 23A2 Collaboration at MAMI, 24A2 Collaboration at MAMI, 25A2 Collaboration at MAMI, 26A2 Collaboration at MAMI, 27A2 Collaboration at MAMI, 28A2 Collaboration at MAMI, 29A2 Collaboration at MAMI, 30A2 Collaboration at MAMI, 31A2 Collaboration at MAMI, 32A2 Collaboration at MAMI, 33A2 Collaboration at MAMI, 34A2 Collaboration at MAMI, 35A2 Collaboration at MAMI, 36A2 Collaboration at MAMI, 37A2 Collaboration at MAMI, 38A2 Collaboration at MAMI, 39A2 Collaboration at MAMI, 40A2 Collaboration at MAMI, 41A2 Collaboration at MAMI, 42A2 Collaboration at MAMI, 43A2 Collaboration at MAMI, 44A2 Collaboration at MAMI, 45A2 Collaboration at MAMI, 46A2 Collaboration at MAMI, 47A2 Collaboration at MAMI, 48A2 Collaboration at MAMI, 49A2 Collaboration at MAMI, 50A2 Collaboration at MAMI, 51A2 Collaboration at MAMI, 52A2 Collaboration at MAMI, 53A2 Collaboration at MAMI, 54A2 Collaboration at MAMI, 55A2 Collaboration at MAMI, 56A2 Collaboration at MAMI, 57A2 Collaboration at MAMI, 58A2 Collaboration at MAMI, 59A2 Collaboration at MAMI, 60A2 Collaboration at MAMI, 61A2 Collaboration at MAMI, 62A2 Collaboration at MAMI, 63A2 Collaboration at MAMI, 64A2 Collaboration at MAMI, 65A2 Collaboration at MAMI, 66A2 Collaboration at MAMI, 67A2 Collaboration at MAMI, 68A2 Collaboration at MAMI, 69A2 Collaboration at MAMI, 70A2 Collaboration at MAMI, 71A2 Collaboration at MAMI, 72A2 Collaboration at MAMI, 73A2 Collaboration at MAMI, 74A2 Collaboration at MAMI, 75A2 Collaboration at MAMI, 76A2 Collaboration at MAMI, 77A2 Collaboration at MAMI, 78A2 Collaboration at MAMI

The g p -> K^0 Sigma^+ reaction has been measured from threshold to Eg=1.45 GeV (W_cm=1.9 GeV) using the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. Read More

The primary motivation of the GlueX experiment is to search for and ultimately study the pattern of gluonic excitations in the meson spectrum produced in $\gamma p$ collisions. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons that have both exotic and non-exotic $J^{PC}$, corresponding to $q\bar{q}$ states ($q=u,$ $d,$ or $s$) coupled with a gluonic field. A thorough study of the hybrid spectrum, including the identification of the isovector triplet, with charges 0 and $\pm1$, and both isoscalar members, $|s\bar{s}\ >$ and $|u\bar{u}\ > + |d\bar{d}\ >$, for each predicted hybrid combination of $J^{PC}$, may only be achieved by conducting a systematic amplitude analysis of many different hadronic final states. Read More

Photoproduction of $\pi^{0}\pi^{0}$ and $\pi^{0}\pi^{\pm}$ pairs from nuclei has been measured over a wide mass range ($^2$H, $^{7}$Li, $^{12}$C, $^{40}$Ca, and $^{\rm nat}$Pb) for photon energies from threshold to 600 MeV. The experiments were performed at the MAMI accelerator in Mainz, using the Glasgow photon tagging spectrometer and a 4$\pi$ electromagnetic calorimeter consisting of the Crystal Ball and TAPS detectors. A shift of the pion-pion invariant mass spectra for heavy nuclei to small invariant masses has been observed for $\pi^0$ pairs but also for the mixed-charge pairs. Read More

Beam-helicity asymmetries have been measured at the MAMI accelerator in Mainz for the photoproduction of neutral pion pairs in the reactions $\vec{\gamma}p\rightarrow p\pi^0\pi^0$ and $\vec{\gamma}d\rightarrow (n)p\pi^0\pi^0$, $\vec{\gamma}d\rightarrow (p)n\pi^0\pi^0$ off free protons and off quasi-free nucleons bound in the deuteron for incident photon energies up to 1.4 GeV. Circularly polarized photons were produced from bremsstrahlung of longitudinally polarized electrons and tagged with the Glasgow magnetic spectrometer. Read More

Coherent photoproduction of $\pi^0$-mesons from threshold ($E_{th} \approx$ 136 MeV) throughout the $\Delta$-resonance region and of $\eta$-mesons close to the production threshold ($E_{th} \approx$ 570 MeV for $\eta$) has been measured for $^7$Li nuclei. The experiment was performed using the tagged-photon beam of the Mainz MAMI accelerator with the Crystal Ball and TAPS detectors combined to give an almost 4$\pi$ solid-angle electromagnetic calorimeter. The reactions were identified by a combined invariant-mass and missing-energy analysis. Read More

2013Feb
Authors: C. S. Nepali, M. Amaryan, K. P. Adhikari, M. Aghasyan, S. Anefalos Pereira, H. Baghdasaryan, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, S. Bültmann, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, P. Collins, M. Contalbrigo, V. Crede, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, A. El Alaoui, L. El Fassi, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, M. Y. Gabrielyan, N. Gevorgyan, K. L. Giovanetti, F. X. Girod, D. I. Glazier, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, N. Guler, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, D. Ho, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, N. D. Kvaltine, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, B. McKinnon, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, E. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, D. Rimal, M. Ripani, B. G. Ritchie, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, B. Torayev, B. Vernarsky, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, J. Zhang

Experimental results on the $\Sigma^+(1189)$ hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson laboratory are presented. The $\Sigma^+(1189)$ was reconstructed in the exclusive reaction $\gamma+p\rightarrow K^{0}_{S} + \Sigma^+(1189)$ via the $\Sigma^{+} \to p \pi^{0}$ decay mode. The $K^{0}_S$ was reconstructed in the invariant mass of two oppositely charged pions with the $\pi^0$ identified in the missing mass of the detected $p\pi^+\pi^-$ final state. Read More

2012Nov
Authors: P. Khetarpal, P. Stoler, I. G. Aznauryan, V. Kubarovsky, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. D. Anderson, S. Anefalos Pereira, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, G. Charles, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, M. Dugger, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, A. Fradi, M. Y. Gabrielyan, M. Garçon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, B. Guegan, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, K. Hicks, D. Ho, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, D. Keller, M. Khandaker, A. Kim, W. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, S. V. Kuleshov, N. D. Kvaltine, S. Lewis, K. Livingston, H. Y. Lu, I. J. D. MacGregor, Y. Mao, D. Martinez, M. Mayer, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, R. Nasseripour, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, E. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, N. A. Saylor, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, S. Tkachenko, M. Ungaro, B. Vernarsky, H. Voskanyan, E. Voutier, N. K. Walford, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao, I. Zonta

We report the measurement of near threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range $Q^2$ from 2 to 4.5 GeV$^2$ and $W$ from 1.08 to 1. Read More

The primary motivation of the GlueX experiment is to search for and ultimately study the pattern of gluonic excitations in the meson spectrum produced in gamma p collisions. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons that have both exotic and non-exotic JPC, corresponding to q q-bar (q=u, d, or s) states coupled with a gluonic field. A thorough study of the hybrid spectrum, including the identification of the isovector triplet, with charges 0 and +-1, and both isoscalar members, |s s-bar> and |u u-bar> + |d d-bar>, for each predicted hybrid combination of JPC, may only be achieved by conducting a systematic amplitude analysis of many different hadronic final states. Read More

A new precise determination of the {\eta} meson mass is presented. It is based on a measurement of the threshold for the {\gamma}p -> p{\eta} reaction using the tagger focal-plane microscope detector at the MAMI-B facility in Mainz. The tagger microscope has a higher energy resolution than the standard tagging spectrometer and, hence, allowed an improvement in the accuracy compared to the previous {\eta} mass measurement at MAMI-B. Read More

Precise total cross-sections and invariant-mass distributions have been measured for photoproduction of pion pairs off the proton producing $p\pi^0\pi^0$ and $n\pi^+\pi^0$ final states from the threshold region up to 800 MeV incident photon energy. Additionally, beam helicity asymmetries have been measured in the second resonance region (550 MeV - 820 MeV). The experiment was performed at the tagged photon beam of the Mainz MAMI accelerator with the Crystal Ball and TAPS detectors combined to give an almost 4$\pi$ solid-angle electromagnetic calorimeter. Read More

2012Jun
Authors: CLAS Collaboration, I. Bedlinskiy, V. Kubarovsky, S. Niccolai, P. Stoler, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, R. P. Bennett, A. S. Biselli, C. Bookwalter, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, M. Garçon, N. Gevorgyan, K. L. Giovanetti, F. X. Girod, W. Gohn, R. W. Gothe, L. Graham, K. A. Griffioen, B. Guegan, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, D. Heddle, K. Hicks, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, N. D. Kvaltine, K. Livingston, H. Y. Lu, I. J. D. MacGregor, Y. Mao, N. Markov, D. Martinez, M. Mayer, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, N. Saylor, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, M. Ungaro, M. F. Vineyard, A. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao, I. Zonta

Exclusive $\pi^0$ electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in $Q^2$, $x_B$, $t$, and $\phi_\pi$, in the $Q^2$ range from 1. Read More

2012Jun
Authors: K. Park, M. Guidal, R. W. Gothe, J. M. Laget, M. Garçon, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, I. Bedlinsky, R. P. Bennett, A. S. Biselli, C. Bookwalter, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, A. Fradi, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, W. Gohn, E. Golovatch, L. Graham, K. A. Griffioen, B. Guegan, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, D. Heddle, K. Hicks, D. Ho, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. S. Jo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, K. Livingston, H. Y. Lu, I. J. D. MacGregor, Y. Mao, N. Markov, D. Martinez, M. Mayer, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, C. S. Nepali, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatie, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, P. Stoler, I. I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, A. Trivedi, M. Ungaro, B . Vernarsky, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao, I. Zonta

The exclusive electroproduction of $\pi^+$ above the resonance region was studied using the $\rm{CEBAF}$ Large Acceptance Spectrometer ($\rm{CLAS}$) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of $\rm{CLAS}$, together with the high luminosity, allowed us to measure the cross section for the $\gamma^* p \to n \pi^+$ process in 140 ($Q^2$, $x_B$, $t$) bins: $0.16Read More

The gamma p --> pi0 pi0 p reaction has been measured from threshold to 1.4 GeV using the Crystal Ball and TAPS photon spectrometers together with the photon tagging facility at the Mainz Microtron. The experimental results include total and differential cross sections as well as specific angular distributions, which were used to extract partial-wave amplitudes. Read More

2012Apr
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration

The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment. Read More

2012Jan
Authors: L. El Fassi, L. Zana, K. Hafidi, M. Holtrop, B. Mustapha, W. K. Brooks, H. Hakobyan, X. Zheng, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. Anghinolfi, J. Arrington, H. Avakian, H. Baghdasaryan, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, C. Bookwalter, D. Branford, W. J. Briscoe, S. Bultmann, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, B. Dey, R. Dickson, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, M. Y. Gabrielyan, M. Garcon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, C. Hanretty, D. Heddle, K. Hicks, R. J. Holt, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, S. S. Jawalkar, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, V. Kuznetsov, J. M. Laget, H. Y. Lu, I. J. D. MacGregor, Y. Mao, N. Markov, M. Mayer, J. McAndrew, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, B. Moreno, H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, B. A. Raue, P. E. Reimer, G. Ricco, D. Rimal, M. Ripani, B. G. Ritchie, G. Rosner, P. Rossi, F. Sabatie, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, P. Stoler, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, D. J. Tedeschi, S. Tkachenko, M. Ungaro, B . Vernarsky, M. F. Vineyard, H. Voskanyan, E. Voutier, D. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, B. Zhao, Z. W. Zhao

We have measured the nuclear transparency of the incoherent diffractive $A(e,e'\rho^0)$ process in $^{12}$C and $^{56}$Fe targets relative to $^2$H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced $\rho^0$'s on a nucleus relative to deuterium, which is sensitive to $\rho A$ interaction, was studied as function of the coherence length ($l_c$), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared ($Q^2$). While the transparency for both $^{12}$C and $^{56}$Fe showed no $l_c$ dependence, a significant $Q^2$ dependence was measured, which is consistent with calculations that included the color transparency effects. Read More

2012Jan
Authors: Kijun Park, Ralf Gothe, Krishna Adhikari, Dasuni Adikaram-Mudiyanselage, Marco Anghinolfi, Hovhannes Baghdasaryan, Jacques Ball, Marco Battaglieri, Vitaly Baturin, Ivan Bedlinskiy, Robert Bennett, Angela Biselli, Craig Bookwalter, Sergey Boyarinov, Derek Branford, William Briscoe, William Brooks, Volker Burkert, Daniel Carman, Andrea Celentano, Shloka Chandavar, Gabriel Charles, Philip Cole, Marco Contalbrigo, Volker Crede, Annalisa D'Angelo, Aji Daniel, Natalya Dashyan, Raffaella De Vita, Enzo De Sanctis, Alexandre Deur, Chaden Djalali, David Doughty, Raphael Dupre, Ahmed El Alaoui, Lamiaa Elfassi, Paul Eugenio, Gleb Fedotov, Ahmed Fradi, Marianna Gabrielyan, Nerses Gevorgyan, Gerard Gilfoyle, Kevin Giovanetti, Francois-Xavier Girod, John Goetz, Wesley Gohn, Evgeny Golovach, Lewis Graham, Keith Griffioen, Michel Guidal, Lei Guo, Kawtar Hafidi, Hayk Hakobyan, Charles Hanretty, David Heddle, Kenneth Hicks, Maurik Holtrop, Yordanka Ilieva, David Ireland, Boris Ishkhanov, Evgeny Isupov, David Jenkins, Hyon-Suk Jo, Kyungseon Joo, Mahbubul Khandaker, Puneet Khetarpal, Andrey Kim, Wooyoung Kim, Andreas Klein, Franz Klein, A. Kubarovsky, Valery Kubarovsky, Sebastian Kuhn, Sergey Kuleshov, Nicholas Kvaltine, Kenneth Livingston, Haiyun Lu, Ian MacGregor, Nikolai Markov, Michael Mayer, Bryan McKinnon, Mac Mestayer, Curtis Meyer, Taisiya Mineeva, Marco Mirazita, Viktor Mokeev, Herve Moutarde, Edwin Munevar Espitia, Pawel Nadel-Turonski, Rakhsha Nasseripour, Silvia Niccolai, Gabriel Niculescu, Maria-Ioana Niculescu, Mikhail Osipenko, Alexander Ostrovidov, Michael Paolone, Luciano Pappalardo, Rafayel Paremuzyan, Seungkyung Park, Sergio Pereira, Evan Phelps, Silvia Pisano, Oleg Pogorelko, Sergey Pozdnyakov, John Price, Sebastien Procureur, Yelena Prok, Giovanni Ricco, Dipak Rimal, Marco Ripani, Barry Ritchie, Guenther Rosner, Patrizia Rossi, Franck Sabatie, Mukesh Saini, Carlos Salgado, Diane Schott, Reinhard Schumacher, Heghine Seraydaryan, Youri Sharabian, Elton Smith, Gregory Smith, Daniel Sober, Daria Sokhan, Samuel Stepanyan, Stepan Stepanyan, Paul Stoler, Igor Strakovski, Steffen Strauch, Mauro Taiuti, Wei Tang, Charles Taylor, Ye Tian, Svyatoslav Tkachenko, Arjun Trivedi, Maurizio Ungaro, Brian Vernarsky, Alexander Vlasov, Eric Voutier, Daniel Watts, Dennis Weygand, Michael Wood, Nicholas Zachariou, Bo Zhao, Zhiwen Zhao, N. Kalantarians, C. E. Hyde

We report the first extraction of the pion-nucleon multipoles near the production threshold for the $n\pi^+$ channel at relatively high momentum transfer ($Q^2$ up to 4.2 $\rm{GeV^2}$). The dominance of the s-wave transverse multipole ($E_{0+}$), expected in this region, allowed us to access the generalized form factor $G_1$ within the light-cone sum rule (LCSR) framework as well as the axial form factor $G_A$. Read More

2011Oct
Authors: N. Baillie, S. Tkachenko, J. Zhang, P. Bosted, S. Bultmann, M. E. Christy, H. Fenker, K. A. Griffioen, C. E. Keppel, S. E. Kuhn, W. Melnitchouk, V. Tvaskis, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. Anghinolfini, J. Arrington, H. Avakian, H. Baghdasaryan, M. Battaglieri, A. S. Biselli, 5 D. Branford, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, B. Dey, C. Djalali, G. Dodge, J. Domingo, D. Doughty, R. Dupre, D. Dutta, R. Ent, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Fradi, M. Y. Gabrielyan, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, W. Gohn, E. Golovatch, R. W. Gothe, L. Graham, B. Guegan, M. Guidal, N. Guler, L. Guo, K. Hafidi, D. Heddle, K. Hicks, M. Holtrop, E. Hungerford, C. E. Hyde, Y. Ilieva, D. G. Ireland, M. Ispiryan, E. L. Isupov, S. S. Jawalkar, H. S. Jo, N. Kalantarians, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, P. M. King, A. Klein, F. J. Klein, A. Klimenko, V. Kubarovsky, S. V. Kuleshov, N. D. Kvaltine, K. Livingston, H. Y. Lu, I . J . D. MacGregor, Y. Mao, N. Markov, B. McKinnon, T. Mineeva, B. Morrison, H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, S. Niccolai, I. Niculescu, G. Niculescu, M. Osipenko, A. I. Ostrovidov, L. Pappalardo, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, S. Pisano, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatie, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, Y. G. Sharabian, D. I. Sober, D. Sokhan, S. Stepanyan, S. S. Stepanyan, P. Stoler, S. Strauch, M. Taiuti, W. Tang, M. Ungaro, M. F. Vineyard, E. Voutier, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, L. Zana, B. Zhao

We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to < 100 MeV and their angles to < 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of Bjorken x for 0. Read More

2011Jun
Authors: M. Aghasyan, H. Avakian, P. Rossi, E. De Sanctis, D. Hasch, M. Mirazita, D. Adikaram, M. J. Amaryan, M. Anghinolfi, H. Baghdasaryan, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, R. P. Bennett, A. S. Biselli, D. Branford, W. J. Briscoe, S. Bültmann, V. D. Burkert, D. S. Carman, S. Chandavar, P. L. Cole, P. Collins, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, A. Deur, B. Dey, R. Dickson, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Fradi, M. Y. Gabrielyan, M. Garçon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, L. Graham, K. A. Griffioen, B. Guegan, M. Guidal, N. Guler, L. Guo, K. Hafidi, C. Hanretty, K. Hicks, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, E. L. Isupov, S. S. Jawalkar, D. Jenkins, H. S. Jo, K. Joo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kimy, A. Klein, F. J. Klein, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, V. Kuznetsov, N. D. Kvaltine, K. Livingston, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, J. McAndrew, B. McKinnon, C. A. Meyer, A. M. Micherdzinska, V. Mokeev, B. Moreno, H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, S. S. Stepanyan, S. Stepanyan, P. Stoler, I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, S. Tkachenko, M. Ungaro, H. Voskanyan, E. Voutier, D. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, L. Zana, J. Zhang, B. Zhao, Z. W. Zhao

We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial $\sin \phi_h$ amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle $\phi_h$ of the produced neutral pion. Read More

2010Nov
Authors: X. Qian, W. Chen, H. Gao, K. Hicks, K. Kramer, J. M. Laget, T. Mibe, Y. Qiang, S. Stepanyan, D. J. Tedeschi, W. Xu, K. P. Adhikari, M. Amaryan, M. Anghinolfi, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, M. Bellis, A. S. Biselli, C. Bookwalter, D. Branford, W. J. Briscoe, W. K. Brooks, V. D. Burkert, S. L. Careccia, D. S. Carman, P. L. Cole, P. Collins, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, B. Dey, S. Dhamija, C. Djalali, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, P. Eugenio, S. Fegan, M. Y. Gabrielyan, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, R. W. Gothe, L. Graham, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Hassall, M. Holtrop, Y. Ilieva, D. G. Ireland, S. S. Jawalkar, H. S. Jo, K. Joo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, A. Klein, F. J. Klein, P. Konczykowski, V. Kubarovsky, S. V. Kuleshov, V. Kuznetsov, K. Livingston, D. Martinez, M. Mayer, J. McAndrew, M. E. McCracken, B. McKinnon, C. A. Meyer, K. Mikhailov, T. Mineeva, M. Mirazita, V. Mokeev, B. Moreno, K. Moriya, B. Morrison, H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, S. Niccolai, I. Niculescu, M. R. Niroula, M. Osipenko, A. I. Ostrovidov, R. Paremuzyan, K. Park, S. Park, S. Anefalos Pereira, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, G. Ricco, M. Ripani, B. G. Ritchie, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, P. Stoler, I. I. Strakovsky, S. Strauch, M. Taiuti, C. E. Taylor, S. Tkachenko, M. Ungaro, B . Vernarsky, M. F. Vineyard, E. Voutier, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, B. Zhao, Z. W. Zhao

We report the first measurement of the differential cross section on $\phi$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. Read More

2010Sep
Affiliations: 1The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 2The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 3The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 4The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 5The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 6The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 7The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 8The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 9The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 10The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 11The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 12The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 13The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 14The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 15The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 16The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 17The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 18The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 19The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 20The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 21The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 22The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 23The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 24The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 25The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 26The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 27The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 28The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 29The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 30The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 31The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 32The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 33The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 34The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 35The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 36The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 37The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 38The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 39The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 40The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 41The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 42The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 43The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 44The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 45The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 46The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 47The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 48The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 49The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 50The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 51The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 52The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 53The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 54The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 55The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 56The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 57The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 58The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 59The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 60The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 61The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 62The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 63The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 64The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 65The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 66The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 67The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 68The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 69The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 70The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 71The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 72The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 73The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 74The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 75The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 76The Crystal Ball at MAMI, TAPS, and A2 Collaborations, 77The Crystal Ball at MAMI, TAPS, and A2 Collaborations

The circular photon asymmetry for pi0 eta photoproduction on the proton was measured for the first time at the tagged photon facility of the MAMI C accelerator using the Crystal Ball/TAPS photon spectrometer. The experimental results are interpreted within a phenomenological isobar model that confirms the dominant role of the Delta(1700)D33 resonance. The measured asymmetry allows us to identify small contributions from positive-parity resonances via interference terms with the dominant D33 amplitude. Read More