D. Hayes - Jefferson Lab Hall A Collaboration

D. Hayes
Are you D. Hayes?

Claim your profile, edit publications, add additional information:

Contact Details

D. Hayes
Jefferson Lab Hall A Collaboration

Pubs By Year

External Links

Pub Categories

Quantum Physics (18)
Physics - Atomic Physics (5)
Nuclear Experiment (4)
Computer Science - Learning (2)
Statistics - Machine Learning (2)
Physics - Instrumentation and Detectors (1)
Physics - Biological Physics (1)
Physics - Mesoscopic Systems and Quantum Hall Effect (1)
Physics - Chemical Physics (1)
Statistics - Methodology (1)
Statistics - Applications (1)
Astrophysics of Galaxies (1)
High Energy Physics - Experiment (1)
Physics - Optics (1)

Publications Authored By D. Hayes

Crop yield forecasting is the methodology of predicting crop yields prior to harvest. The availability of accurate yield prediction frameworks have enormous implications from multiple standpoints, including impact on the crop commodity futures markets, formulation of agricultural policy, as well as crop insurance rating. The focus of this work is to construct a corn yield predictor at the county scale. Read More

We conduct a spectroscopic search of quasars observed by the Sloan Digital Sky Survey (SDSS) with broad absorption line (BAL) troughs due to Mg II and troughs due to Fe II that simultaneously exhibit strong Balmer narrow emission lines (NELs). We find that in a redshift range of 0.4 less than or equal to z less than or equal to 0. Read More

We present final results on the photon electroproduction ($\vec{e}p\rightarrow ep\gamma$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Read More

Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Read More

Binary classification is a common statistical learning problem in which a model is estimated on a set of covariates for some outcome indicating the membership of one of two classes. In the literature, there exists a distinction between hard and soft classification. In soft classification, the conditional class probability is modeled as a function of the covariates. Read More

Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration

In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Electroproduction of the hypernucleus Lambda-9Li has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. Read More

Instabilities due to extrinsic interference are routinely faced in systems engineering, and a common solution is to rely on a broad class of $\textit{filtering}$ techniques in order to afford stability to intrinsically unstable systems. For instance, electronic systems are frequently designed to incorporate electrical filters composed of, $\textit{e.g. Read More

We develop and demonstrate a technique to engineer universal unitary baths in quantum systems. Using the correspondence between unitary decoherence due to ambient environmental noise and errors in a control system for quantum bits, we show how a wide variety of relevant classical error models may be realized through In-Phase/Quadrature modulation on a vector signal generator producing a resonant carrier signal. We demonstrate our approach through high-bandwidth modulation of the 12. Read More

We stabilize a chosen radiofrequency beat note between two optical fields derived from the same mode-locked laser pulse train, in order to coherently manipulate quantum information. This scheme does not require access or active stabilization of the laser repetition rate. We implement and characterize this external lock, in the context of two-photon stimulated Raman transitions between the hyperfine ground states of trapped 171-Yb+ quantum bits. Read More

Quantum simulation is a promising near term application for mesoscale quantum information processors, with the potential to solve computationally intractable problems at the scale of just a few dozen interacting quantum systems. Recent experiments in a range of technical platforms have demonstrated the basic functionality of quantum simulation applied to quantum magnetism, quantum phase transitions, and relativistic quantum mechanics. In all cases, the underlying hardware platforms restrict the achievable inter-particle interaction, forming a serious constraint on the ability to realize a versatile, programmable quantum simulator. Read More

Pulsed lasers offer significant advantages over CW lasers in the coherent control of qubits. Here we review the theoretical and experimental aspects of controlling the internal and external states of individual trapped atoms with pulse trains. Two distinct regimes of laser intensity are identified. Read More

Quantum memory is a central component for quantum information processing devices, and will be required to provide high-fidelity storage of arbitrary states, long storage times and small access latencies. Despite growing interest in applying physical-layer error-suppression strategies to boost fidelities, it has not previously been possible to meet such competing demands with a single approach. Here we use an experimentally validated theoretical framework to identify periodic repetition of a high-order dynamical decoupling sequence as a systematic strategy to meet these challenges. Read More

We study dynamical error suppression from the perspective of reducing sequencing complexity, in order to facilitate efficient semi-autonomous quantum-coherent systems. With this aim, we focus on digital sequences where all interpulse time periods are integer multiples of a minimum clock period and compatibility with simple digital classical control circuitry is intrinsic, using so-called em Walsh functions as a general mathematical framework. The Walsh functions are an orthonormal set of basis functions which may be associated directly with the control propagator for a digital modulation scheme, and dynamical decoupling (DD) sequences can be derived from the locations of digital transitions therein. Read More

We demonstrate a simple pulse shaping technique designed to improve the fidelity of spin-dependent force operations commonly used to implement entangling gates in trapped-ion systems. This extension of the M{\o}lmer-S{\o}rensen gate can theoretically suppress the effects of certain frequency and timing errors to any desired order and is demonstrated through Walsh modulation of a two-qubit entangling gate on trapped atomic ions. The technique is applicable to any system of qubits coupled through collective harmonic oscillator modes. Read More

We demonstrate single qubit operations on a trapped atom hyperfine qubit using a single ultrafast pulse from a mode-locked laser. We shape the pulse from the laser and perform a pi rotation of the qubit in less than 50 ps with a population transfer exceeding 99% and negligible effects from spontaneous emission or ac Stark shifts. The gate time is significantly shorter than the period of atomic motion in the trap (Rabi frequency / trap frequency > 10000), demonstrating that this interaction takes place deep within the strong excitation regime. Read More

Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center which stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer - a wavelike transfer mechanism - occurs in many photosynthetic pigment-protein complexes (1-4). Read More

We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. Read More

Randomness is a fundamental feature in nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Read More

Quantum teleportation is the faithful transfer of quantum states between systems, relying on the prior establishment of entanglement and using only classical communication during the transmission. We report teleportation of quantum information between atomic quantum memories separated by about 1 meter. A quantum bit stored in a single trapped ytterbium ion (Yb+) is teleported to a second Yb+ atom with an average fidelity of 90% over a replete set of states. Read More

Trapped atomic ions have proven to be one of the most promising candidates for the realization of quantum computation due to their long trapping times, excellent coherence properties, and exquisite control of the internal atomic states. Integrating ions (quantum memory) with photons (distance link) offers a unique path to large-scale quantum computation and long-distance quantum communication. In this article, we present a detailed review of the experimental implementation of a heralded photon-mediated quantum gate between remote ions, and the employment of this gate to perform a teleportation protocol between two ions separated by a distance of about one meter. Read More

Quantum networks based on atomic qubits and scattered photons provide a promising way to build a large-scale quantum information processor. We review quantum protocols for generating entanglement and operating gates between two distant atomic qubits, which can be used for constructing scalable atom--photon quantum networks. We emphasize the crucial role of collecting light from atomic qubits for large-scale networking and describe two techniques to enhance light collection using reflective optics or optical cavities. Read More

We present a precise measurement of the lifetime of the 6p 2P_1/2 excited state of a single trapped ytterbium ion (Yb+). A time-correlated single-photon counting technique is used, where ultrafast pulses excite the ion and the emitted photons are coupled into a single-mode optical fiber. By performing the measurement on a single atom with fast excitation and excellent spatial filtering, we are able to eliminate common systematics. Read More

We demonstrate a probabilistic entangling quantum gate between two distant trapped ytterbium ions. The gate is implemented between the hyperfine "clock" state atomic qubits and mediated by the interference of two emitted photons carrying frequency encoded qubits. Heralded by the coincidence detection of these two photons, the gate has an average fidelity of 90+-2%. Read More

An experimental study of the 16O(e,e'K^+)16N_Lambda reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e'K^+)Lambda,Sigma_0 exclusive reactions and a precise calibration of the energy scale. Read More

In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. Read More

An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Read More

A nuclear spin can act as a quantum switch that turns on or off ultracold collisions between atoms even when there is neither interaction between nuclear spins nor between the nuclear and electron spins. This "exchange blockade" is a new mechanism for implementing quantum logic gates that arises from the symmetry of composite identical particles, rather than direct coupling between qubits. We study the implementation of the entangling $\sqrt{\text{SWAP}}$ gate based on this mechanism for a model system of two atoms with ground electron configuration $^1S_0$, spin 1/2 nuclei, trapped in optical tweezers. Read More