Corey Oses

Corey Oses
Are you Corey Oses?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Corey Oses
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Materials Science (9)
 
Physics - Computational Physics (1)

Publications Authored By Corey Oses

The fundamental principles underlying the arrangement of the elements into solid compounds with an enormous variety of crystal structures are still largely unknown. This study presents a general overview of the structure types appearing in an important subset of the solid compounds, i.e. Read More

Automated computational materials science frameworks rapidly generate large quantities of materials data useful for accelerated materials design. We have extended the data oriented AFLOW-repository API (Application-Program-Interface, as described in Comput. Mater. Read More

Thorough characterization of the thermo-mechanical properties of materials requires difficult and time-consuming experiments. This severely limits the availability of data and it is one of the main obstacles for the development of effective accelerated materials design strategies. The rapid screening of new potential systems requires highly integrated, sophisticated and robust computational approaches. Read More

Historically, materials discovery has been driven by a laborious trial-and-error process. The growth of materials databases and emerging informatics approaches finally offer the opportunity to transform this practice into data- and knowledge-driven rational design. By using data from the AFLOW repository for high-throughput ab-initio calculations, we have generated Quantitative Materials Structure-Property Relationship (QMSPR) models to predict eight critical electronic and thermomechanical materials properties, such as the metal/insulator classification, band gap energy, bulk and shear moduli, Debye temperature, and heat capacity. Read More

Using finite-temperature phonon calculations and machine-learning methods, we calculate the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0 K, 300 K and 1000 K. We find 92 mechanically stable compounds at high temperatures -- including 36 not mentioned in the literature so far -- for which we calculate the thermal conductivity. We demonstrate that the thermal conductivity is generally smaller in fluorides than in oxides, largely due to a lower ionic charge, and describe simple structural descriptors that are correlated with its magnitude. Read More

In 2006, a novel cobalt-based superalloy was discovered [1] with mechanical properties better than some conventional nickel-based superalloys. As with conventional superalloys, its high performance arises from the precipitate-hardening effect of a coherent L1$_2$ phase, which is in two-phase equilibrium with the fcc matrix. Inspired by this unexpected discovery of an L1$_2$ ternary phase, we performed a first-principles search through 2224 ternary metallic systems for analogous precipitate-hardening phases of the form $X_{3}$[$A_{0. Read More

Predicting material properties of disordered systems remains a long-standing and formidable challenge in rational materials design. To address this issue, we introduce an automated software framework capable of modeling partial occupation within disordered materials using a high-throughput (HT) first principles approach. At the heart of the approach is the construction of supercells containing a virtually equivalent stoichiometry to the disordered material. Read More

The Automatic-Flow ( AFLOW ) standard for the high-throughput construction of materials science electronic structure databases is described. Electronic structure calculations of solid state materials depend on a large number of parameters which must be understood by researchers, and must be reported by originators to ensure reproducibility and enable collaborative database expansion. We therefore describe standard parameter values for k-point grid density, basis set plane wave kinetic energy cut-off, exchange-correlation functionals, pseudopotentials, DFT+U parameters, and convergence criteria used in AFLOW calculations. Read More

As the proliferation of high-throughput approaches in materials science is increasing the wealth of data in the field, the gap between accumulated-information and derived-knowledge widens. We address the issue of scientific discovery in materials databases by introducing novel analytical approaches based on structural and electronic materials fingerprints. The framework is employed to (i) query large databases of materials using similarity concepts, (ii) map the connectivity of the materials space (i. Read More