Christoph Kreisbeck

Christoph Kreisbeck
Are you Christoph Kreisbeck?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Christoph Kreisbeck
Affiliation
Location

Pubs By Year

Pub Categories

 
Quantum Physics (7)
 
Physics - Chemical Physics (7)
 
Physics - Biological Physics (5)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (4)
 
Physics - Computational Physics (1)

Publications Authored By Christoph Kreisbeck

We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations. Read More

The investigation of energy transfer properties in photosynthetic multi-protein networks gives insight into their underlying design principles.Here, we discuss excitonic energy transfer mechanisms of the photosystem II (PS-II) C$_2$S$_2$M$_2$ supercomplex, which is the largest isolated functional unit of the photosynthetic apparatus of higher plants.Despite the lack of a decisive energy gradient in C$_2$S$_2$M$_2$, we show that the energy transfer is directed by relaxation to low energy states. Read More

With quantum computers being out of reach for now, quantum simulators are the alternative devices for efficient and more exact simulation of problems that are challenging on conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. In this paper, we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. Read More

The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. Read More

A numerically exact Monte Carlo scheme for calculation of open quantum system dynamics is proposed and implemented. The method consists of a Monte-Carlo summation of a perturbation expansion in terms of trajectories in Liouville phase-space with respect to the coupling between the excited states of the molecule. The trajectories are weighted by a complex decoherence factor based on the second-order cumulant expansion of the environmental evolution. Read More

Quantum transport and other phenomena are typically modeled by coupling the system of interest to an environment, or bath, held at thermal equilibrium. Realistic bath models are at least as challenging to construct as models for the quantum systems themselves, since they must incorporate many degrees of freedom that interact with the system on a wide range of timescales. Owing to computational limitations, the environment is often modeled with simple functional forms, with a few parameters fit to experiment to yield semi-quantitative results. Read More

The prevalence of long-lasting oscillatory signals in the 2d echo-spectroscopy of light-harvesting complexes has led to a search for possible mechanisms. We investigate how two causes of oscillatory signals are intertwined: (i) electronic coherences supporting delocalized wave-like motion, and (ii) narrow bands in the vibronic spectral density. To disentangle the vibronic and electronic contributions we introduce a time-windowed Fourier transform of the signal amplitude. Read More

The observed prevalence of oscillatory signals in the spectroscopy of biological light-harvesting complexes at ambient temperatures has led to a search for mechanisms supporting coherent transport through larger molecules in noisy environments. We demonstrate a generic mechanism supporting long-lasting electronic coherence up to 0.3 ps at a temperature of 277 K. Read More

Recent experimental observations of time-dependent beatings in the two-dimensional echo-spectra of light-harvesting complexes at ambient temperatures have opened up the question whether coherence and wave-like behaviour plays a significant role in photosynthesis. We perform a numerical study of the absorption and echo-spectra of the Fenna-Matthews-Olson (FMO) complex in chlorobium tepidum and analyse the requirements in the theoretical model needed to reproduce beatings in the calculated spectra. The energy transfer in the FMO pigment-protein complex is theoretically described by an exciton Hamiltonian coupled to a phonon bath which account for the pigments electronic and vibrational excitations respectively. Read More

Excitonic models of light-harvesting complexes, where the vibrational degrees of freedom are treated as a bath, are commonly used to describe the motion of the electronic excitation through a molecule. Recent experiments point toward the possibility of memory effects in this process and require to consider time non-local propagation techniques. The hierarchical equations of motion (HEOM) were proposed by Ishizaki and Fleming to describe the site-dependent reorganization dynamics of protein environments (J. Read More

Quantum coherent properties of electrons can be studied in Aharonov-Bohm (AB) interferometers. We investigate both experimentally and theoretically the transmission phase evolution in a four-terminal quasi-one-dimensional AlGaAs/GaAs-based waveguide AB ring. As main control parameter besides the magnetic field, we tune the Fermi wave number along the pathways using a top-gate. Read More

Wave packets provide a well established and versatile tool for studying time-dependent effects in molecular physics. Here, we demonstrate the application of wave packets to mesoscopic nanodevices at low temperatures. The electronic transport in the devices is expressed in terms of scattering and transmission coefficients, which are efficiently obtained by solving an initial value problem (IVP) using the time-dependent Schroedinger equation. Read More

We study the quantum Hall effect (QHE) in graphene based on the current injection model. In our model, the presence of disorder, the edge-state picture, extended states and localized states, which are believed to be indispensable ingredients in describing the QHE, do not play an important role. Instead the boundary conditions during the injection into the graphene sheet, which are enforced by the presence of the Ohmic contacts, determine the current-voltage characteristics. Read More