Christoph Englert

Christoph Englert
Are you Christoph Englert?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Christoph Englert
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (50)
 
High Energy Physics - Experiment (32)
 
Cosmology and Nongalactic Astrophysics (2)
 
High Energy Physics - Lattice (2)

Publications Authored By Christoph Englert

We investigate a recently proposed UV-complete composite Higgs scenario in the light of the first LHC runs. The model is based on a SU(4) gauge group with global flavour symmetry breaking SU(5)$\to$ SO(5), giving rise to pseudo Nambu-Goldstone bosons in addition to the Higgs doublet. This includes a real and a complex electroweak triplet with exotic electric charges. Read More

We provide a comprehensive analysis of the power of including top quark-polarisation information to kinematically challenging $t\bar t$ resonance searches, for which ATLAS and CMS start losing sensitivity. Following the general modeling and analysis strategies pursued by the experiments, we analyse the semi-leptonic and the di-lepton $t\bar t$ channels and show that including polarisation information can lead to large improvements in the limit setting procedures with large data sets. This will allow us to set limits for parameter choices where sensitivity from $m(t\bar t)$ is not sufficient. Read More

Several UV complete models of physics beyond the Standard Model are currently under scrutiny, their low-energy dynamics being compared with the experimental data from the LHC. Lattice simulations can play a role in these studies by providing a first principles computations of the low-energy constants that describe this low-energy dynamics. In this work, we study in detail a specific model recently proposed by Ferretti, and discuss the potential impact of lattice calculations. Read More

${\rm W}^\pm {\rm W}^\pm {\rm H}$ production at hadron colliders through vector boson scattering is a so far unconsidered process, which leads to a clean signature of two same-sign charged leptons and two widely separated jets. This process is sensitive to the ${\rm HHH}$ and ${\rm WWHH}$ couplings and any deviation of these couplings from their SM predictions serves as direct evidence of new physics beyond the SM. In this paper we perform a Monte Carlo study of this process for the $\sqrt{s}=14$ TeV LHC and a $100$ TeV pp-collider, and provide projections of the constraints on the triple-Higgs and ${\rm WWHH}$ quartic couplings for these environments. Read More

We discuss a global fit of top quark BSM couplings, phrased in the model-independent language of higher-dimensional effective operators, to the currently available data from the LHC and Tevatron. We examine the interplay between inclusive and differential measurements, and the complementarity of LHC and Tevatron results. We conclude with a discussion of projections for improvement over LHC Run II. Read More

Perturbative probability conservation provides a strong constraint on the presence of new interactions of the Higgs boson. In this work we consider CP violating Higgs interactions in conjunction with unitarity constraints in the gauge-Higgs and fermion-Higgs sectors. Injecting signal strength measurements of the recently discovered Higgs boson allows us to make concrete and correlated predictions of how CP-violation in the Higgs sector can be directly constrained through collider searches for either characteristic new states or tell-tale enhancements in multi-Higgs processes. Read More

Non-minimal composite Higgs scenarios can contain exotic Higgs states which, if getting observed at the Large Hadron Collider, will help to constrain the underlying UV structure of the strong dynamics. Doubly charged Higgs bosons are well-motivated scalar degrees of freedom in this context. Their phenomenology in typical composite scenarios can differ from well-established Higgs triplet extensions of the SM. Read More

In this paper we argue that monojet and monophoton searches can be a sensitive test of very highly ionizing particles such as particles with charges $\gtrsim 150e$ and more generally particles that do not reach the outer parts of the detector. 8 TeV monojet data from the CMS experiment excludes such objects with masses in the range $\lesssim 650~{\text{GeV}}$ and charges $\gtrsim 100e$. This nicely complements searches for highly ionizing objects at ALICE, ATLAS, CMS and LHCb. Read More

We investigate the prospects to systematically improve generic effective field theory-based searches for new physics in the top sector during LHC run 2 as well as the high luminosity phase. In particular, we assess the benefits of high momentum transfer final states on top EFT-fit as a function of systematic uncertainties in comparison with sensitivity expected from fully-resolved analyses focusing on $t\bar t$ production. We find that constraints are typically driven by fully-resolved selections, while boosted top quarks can serve to break degeneracies in the global fit. Read More

Dark sectors with strong interactions have received considerable interest. Assuming the existence of a minimally coupled dark sector which runs to strong interactions in the infrared, we address the question whether the scaling behavior of this dark sector can be observed in missing energy signatures at present and future hadron colliders. We compare these findings to the concrete case of self-interacting dark matter and demonstrate that the energy dependence of high-momentum transfer final states can in principle be used to gain information about the UV structure of hidden sectors at future hadron colliders, subject to large improvements in systematic uncertainties, which could complement proof-of-principle lattice investigations. Read More

The ultraviolet structure of $s$-channel mediator dark matter simplified models at hadron colliders is considered. In terms of commonly studied $s$-channel mediator simplified models it is argued that at arbitrarily high energies the perturbative description of dark matter production in high energy scattering at hadron colliders will break down in a number of cases. This is analogous to the well documented breakdown of an EFT description of dark matter collider production. Read More

Scalar dark energy fields that couple to the Standard Model can give rise to observable signatures at the LHC. In this work we show that $t\bar t+$missing energy and mono-jet searches are suitable probes in the limit where the dark energy scalar is stable on collider distances. We discuss the prospects of distinguishing the dark energy character of new physics signals from dark matter signatures and the possibility of probing the self-interactions of the dark energy sector. Read More

We re-investigate electroweak signal-background interference in associated Higgs production via gluon fusion in the presence of new physics in the top-Higgs sector. Considering the full final state $pp \to b \bar b \ell^+\ell^-$ ($\ell=e,\mu$), we discuss how new physics in the top-Higgs sector that enhances the $ZZ$ component can leave footprints in the $HZ$ limit setting. In passing we investigate the phenomenology of a class of new physics interactions that can be genuinely studied in this process. Read More

We perform an up-to-date global fit of top quark effective theory to experimental data from the Tevatron, and from LHC Runs I and II. Experimental data includes total cross-sections up to 13 TeV, as well as differential distributions, for both single top and pair production. We also include the top quark width, charge asymmetries, and polarisation information from top decay products. Read More

We study Higgs production through weak boson fusion with subsequent decay to bottom quarks. By combining jet substructure techniques and matrix element methods in different limits we motivate this channel as a probe of the bottom-Yukawa interactions in the boosted regime. In particular we ameliorate the "no-go" results of cut-and-count analyses in this channel. Read More

Due to the absence of tantalising hints for new physics during the LHC's run 1, the extension of the Higgs sector by dimension six operators will provide the new phenomenological standard for searches of non-resonant extensions of the Standard Model. Using all dominant and subdominant Higgs production mechanisms at the LHC, we compute the constraints on Higgs physics-relevant dimension six operators in a global and correlated fit. We show in how far these constraints can be improved by new Higgs channels becoming accessible at higher energy and luminosity, both through inclusive cross sections as well as through highly sensitive differential distributions. Read More

In this paper we present a global fit of beyond the Standard Model (BSM) dimension six operators relevant to the top quark sector to currently available data. Experimental measurements include parton-level top-pair and single top production from the LHC and the Tevatron. Higher order QCD corrections are modelled using differential and global K-factors, and we use novel fast-fitting techniques developed in the context of Monte Carlo event generator tuning to perform the fit. Read More

The search for di-Higgs production at the LHC in order to set limits on Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and weak boson fusion contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. Read More

Disformally coupled, light scalar fields arise in many of the theories of dark energy and modified gravity that attempt to explain the accelerated expansion of the universe. They have proved difficult to constrain with precision tests of gravity because they do not give rise to fifth forces around static non-relativistic sources. However, because the scalar field couples derivatively to standard model matter, measurements at high energy particle colliders offer an effective way to constrain and potentially detect a disformally coupled scalar field. Read More

The correlation of on- and off-shell Higgs boson production at the LHC in $gg \to h^* \to ZZ$ to bound the Higgs width, under specific model-dependent assumptions, has recently received a lot of attention. As off-shell cross section measurements in this channel suffer from a small signal yield, large backgrounds, and theoretical uncertainties, we propose an alternative complementary constraint which is only possible through the combination of LEP and LHC measurements. Previous precision electroweak measurements at LEP allow for the determination of indirect constraints on Higgs couplings to vector bosons by considering one-loop processes involving virtual Higgs exchange. Read More

If the recently discovered Higgs boson's couplings deviate from the Standard Model expectation, we may anticipate new resonant physics in the weak boson fusion channels resulting from high scale unitarity sum rules of longitudinal gauge boson scattering. Motivated by excesses in analyses of multi-leptons+missing energy+jets final states during run 1, we perform a phenomenological investigation of these channels at the LHC bounded by current Higgs coupling constraints. Such an approach constrains the prospects to observe such new physics at the LHC as a function of very few and generic parameters and allows the investigation of the strong requirement of probability conservation in the electroweak sector to high energies. Read More

Top quark loops in Higgs production via gluon fusion at large invariant final state masses can induce important interference effects in searches for additional Higgs bosons as predicted in, e.g., Higgs portal scenarios and the MSSM when the heavy scalar is broad or the final state resolution is poor. Read More

An important physics goal of a possible next-generation high-energy hadron collider will be precision characterisation of the Higgs sector and electroweak symmetry breaking. A crucial part of understanding the nature of electroweak symmetry breaking is measuring the Higgs self-interactions. We study dihiggs production in proton-proton collisions at 100 TeV centre of mass energy in order to estimate the sensitivity such a machine would have to variations in the trilinear Higgs coupling around the Standard Model expectation. Read More

Proposals of measuring the off-shell Higgs contributions and first measurements at the LHC have electrified the Higgs phenomenology community for two reasons: Firstly, probing interactions at high invariant masses and momentum transfers is intrinsically sensitive to new physics beyond the Standard Model, irrespective of a resonant or non-resonant character of a particular BSM scenario. Secondly, under specific assumptions a class of models exists for which the off-shell coupling measurement together with a measurement of the on-shell signal strength can be re-interpreted in terms of a bound on the total Higgs boson width. In this paper, we provide a first step towards a classification of the models for which a total width measurement is viable and we discuss examples of BSM models for which the off-shell coupling measurement can be important in either constraining or even discovering new physics in the upcoming LHC runs. Read More

Searches for multi-Higgs final states allow to constrain parameters of the SM (or extensions thereof) that directly relate to the mechanism of electroweak symmetry breaking. Multi-Higgs production cross sections, however, are small and the phenomenologically accessible final states are challenging to isolate in the busy multi-jet hadron collider environment of the LHC run 2. This makes the necessity to extend the list of potentially observable production mechanisms obvious. Read More

If the LHC run 2 will not provide conclusive hints for new resonant Physics beyond the Standard Model, dedicated and consistent search strategies at high momentum transfers will become the focus of searches for anticipated deviations from the Standard Model expectation. We discuss the phenomenological importance of QCD and electroweak corrections in bounding higher dimensional operators when analysing energy-dependent differential distributions. In particular, we study the impact of RGE-induced operator running and mixing effects on measurements performed in the context of an Effective Field Theory extension of the SM. Read More

In the Standard Model the Higgs coupling to gluons is almost entirely induced by top quark loops. We derive the logarithmic structure of Higgs production in association with two jets. Just like in the one-jet case the transverse momentum distributions exhibit logarithms of the top quark mass and can be used to test the nature of the loop-induced Higgs coupling to gluons. Read More

Indirect constraints on the total Higgs width $\Gamma_h$ from correlating Higgs signal strengths with cross section measurements in the off-shell region for $p(g)p(g)\to 4\ell$ production have received considerable attention recently, and the CMS collaboration have published a first measurement. We revisit this analysis from a new physics and unitarity constraints perspective and conclude that limits on $\Gamma_h$ obtained in this fashion are not reliable unless we make model-specific assumptions, which cannot be justified at the current stage of the LHC programme. Relaxing the $\Gamma_h$ interpretation, we discuss the merits of high invariant mass cross section measurements in the context of Higgs CP analyses, higher dimensional operator testing, and resolved new physics in the light of electroweak precision constraints beyond effective theory limitations. Read More

After the discovery of the 125 GeV scalar boson with gauge properties similar to the Standard Model Higgs, the search for beyond the SM interactions will focus on studying the discovered particles' coupling properties more precisely and shedding light on the relation of fermion masses with the electroweak vacuum. The large mass of the top quark and the SM-predicted order one top Yukawa coupling is a natural candidate for BSM physics, though experimentally challenging to constrain. In this paper, we argue that investigating angular correlations in $pp\to tHj$ production provides an excellent handle to constrain the top Yukawa coupling $y_t$ via direct measurements, even when we focus on rare exclusive final states. Read More

The top quark, being the heaviest particle of the Standard Model, is a prime candidate of where physics beyond the SM might currently hide before our eyes. There are many natural extensions of the SM that rely on top compositeness, and the top quark could follow the paradigm of revealing a substructure when it is probed at high enough momentum transfers. Observing high $p_T$ top final states naturally drives us towards boosted hadronic analyses that can be tackled efficiently with jet substructure techniques. Read More

Analyses of boosted Higgs bosons from associated production comprise some of the main search channels for the Higgs boson at the LHC. The gluon-initiated $gg\to hZ$ subprocess has largely been ignored in phenomenological analyses of boosted associated production although this contribution is sizable as the $p_T$ spectrum for this process is maximised in the boosted regime due to the top quark loop threshold. In this paper, we discuss this contribution to boosted $pp\to hZ$ analyses in detail. Read More

A measurement of the $hh+2j$ channel at the LHC would be particularly thrilling for electroweak physics. It is not only the leading process which is sensitive to the $W^+W^- hh$ and $ZZhh$ interactions, but also provides a potentially clear window to study the electroweak symmetry-breaking sector by probing Higgs-Goldstone interactions through the weak boson fusion component of the scattering process. Until now, a phenomenologically complete analysis of this channel has been missing. Read More

Higgs boson self-interactions can be investigated via di-Higgs ($pp\to hh+X$) production at the LHC. With a small ${\cal{O}}(30)$ fb Standard Model production cross section, and a large $t\bar t$ background, this measurement has been considered challenging, even at a luminosity-upgraded LHC. We demonstrate that by using simple kinematic bounding variables, of the sort already employed in existing LHC searches, the dominant $t\bar t$ background can be largely eliminated. Read More

The status of di-boson and tri-boson production is shortly review. Using the VBFNLO and the LOOPSIM package, approximated results at NNLO QCD are given for WZ production. Results for waa + jet at NLO QCD are also shown. Read More

Extensions of the Standard Model Higgs sector involving weak isotriplet scalars are not only benchmark candidates to reconcile observed anomalies of the recently discovered Higgs-like particle, but also exhibit a vast parameter space, for which the lightest Higgs' phenomenology turns out to be very similar to the Standard Model one. A generic prediction of this model class is the appearance of exotic doubly charged scalar particles. In this paper we adapt existing dilepton+missing energy+jets measurements in the context of SUSY searches to the dominant decay mode $H^{\pm\pm}\to W^\pm W^\pm$ and find that the LHC already starts probing the model's parameter space. Read More

Any new scalar fields that perturbatively solve the hierarchy problem by stabilizing the Higgs mass also generate new contributions to the Higgs field-strength renormalization, irrespective of their gauge representation. These new contributions are physical and their magnitude can be inferred from the requirement of quadratic divergence cancellation, hence they are directly related to the resolution of the hierarchy problem. Upon canonically normalizing the Higgs field these new contributions lead to modifications of Higgs couplings which are typically great enough that the hierarchy problem and the concept of electroweak naturalness can be probed thoroughly within a precision Higgs program. Read More

After the discovery of a Higgs-like particle at the LHC, the determination of its spin quantum numbers across different channels will be the next step in arriving at a more precise understanding of the new state and its role in electroweak symmetry breaking. Event shape observables have been shown to provide extremely sensitive observables for the discrimination of the scalar Higgs boson's CP quantum numbers as a consequence of the different radiation patterns of Higgs production via gluon fusion vs. weak boson fusion in the $pp\to X+2j$ selection. Read More

Many beyond the Standard Model (BSM) scenarios involve Higgs couplings to additional electroweak fields. It is well established that these new fields may modify Higgs gamma-gamma and gamma-Z decays at one-loop. However, one unexplored aspect of such scenarios is that by electroweak symmetry one should also expect modifications to the Higgs Z-Z coupling at one-loop and, more generally, modifications to Higgs production and decay channels beyond tree-level. Read More

ATLAS and CMS have discovered a Standard Model Higgs-like particle. One of the main discovery channels is the Higgs decay to two photons, which, at the moment, seems to be considerably enhanced over the Standard Model expectation. Models with additional charged matter coupling to the Higgs sector can enhance or decrease the Higgs to two photons branching ratio. Read More

Having discovered a candidate for the final piece of the Standard Model, the Higgs boson, the question remains why its vacuum expectation value and its mass are so much smaller than the Planck scale (or any other high scale of new physics). One elegant solution was provided by Coleman and Weinberg, where all mass scales are generated from dimensionless coupling constants via dimensional transmutation. However, the original Coleman-Weinberg scenario predicts a Higgs mass which is too light; it is parametrically suppressed compared to the mass of the vectors bosons, and hence is much lighter than the observed value. Read More

After the recent discovery of a Standard Model Higgs boson-like particle at the LHC, the question of its couplings to known and unknown matter is eminent. In this letter, we present a method that allows for an enhancement in S/B(irreducible) of the order of 100% in $pp\to (h\to \gamma\gamma) jj$ for a center of mass energy of 8 and 14 TeV. This is achieved by applying the matrix element method. Read More

Multi-Higgs production provides a phenomenologically clear window to the electroweak symmetry breaking sector. We perform a comprehensive and comparative analysis of new electroweak physics effects in di-Higgs and di-Higgs+jet production. In particular, we discuss resonant di-Higgs phenomenology, which arises in the Higgs portal model and in the MSSM at small tan beta, and non-resonant new physics contributions to di-Higgs production in models where the newly discovered Higgs candidate is interpreted as a pseudo-Nambu-Goldstone boson. Read More

The basic structure of top-quarks as spin-1/2 particles is characterized by the radius $R_t$ and the intrinsic magnetic dipole moment $\kappa_t$, both individually associated with gauge interactions. They are predicted to be zero in pointlike theories as the Standard Model. We derive upper limits of these parameters in the color sector from cross sections measured at Tevatron and LHC in top-pair production $p{\bar{p}}/pp \to t{\bar{t}}$, and we predict improved limits expected from LHC in the future, especially for analyses exploiting boosted top final states. Read More

Both Atlas and CMS have reported a discovery of a Standard Model-like Higgs boson $H$ of mass around 125 GeV. Consistency with the Standard Model implies the non-observation of non-SM like decay modes of the newly discovered particle. Sensitivity to such decay modes, especially when they involve partially invisible final states is currently beyond scrutiny of the LHC. Read More

Both the ATLAS and CMS collaborations have reported a Standard Model Higgs-like excess at around $m_h = 125$ GeV. If an SM-like Higgs particle is discovered in this particular mass range, an important additional test of the SM electroweak symmetry breaking sector is the measurement of the Higgs self-interactions. We investigate the prospects of measuring the Higgs self-coupling for $m_h=125 \gev$ in the dominant SM decay channels in boosted and unboosted kinematical regimes. Read More

The properties of multi-jet events impact many LHC analysis. The exclusive number of jets at hadron colliders can be described in terms of two simple patterns: staircase scaling and Poisson scaling. In photon plus jets production we can interpolate between the two patterns using simple kinematic cuts. Read More

Recent measurements by the ATLAS and CMS experiments have excluded the Standard Model Higgs boson in the high mass region, even if it is produced with a significantly smaller cross section than expected. The bounds are dominated by the non-observation of a signal in the clean gold-plated mode $h\to ZZ\to 4\ell$ and, hence, are directly related to the special role of the Higgs in electroweak symmetry breaking. A smaller cross section in comparison to the Standard Model is expected if the Higgs is realized as an unparticle in the Unhiggs scenario. Read More

Interpretations of searches for the Higgs boson are governed by model-dependent combinations of Higgs production cross sections and Higgs branching ratios. Mixing of the Higgs doublet with a hidden sector captures modifications from the Standard Model Higgs phenomenology in the standard search channels in a representative way, in particular because invisible Higgs decay modes open up. As a consequence, LHC exclusion bounds, which disfavor a heavy Standard Model Higgs can be consistently understood in terms of a standard-hidden mixed Higgs system. Read More

Experimental falsification or validation of the Standard Model of Particle Physics involves the measurement of the CP quantum number and couplings of the Higgs boson. Both ATLAS and CMS have reported an SM Higgs-like excess around m_H=125 GeV. In this mass range the properties of the Higgs boson can be extracted from an analysis of the azimuthal angle distribution of the two jets in pp->Hjj events. Read More

We investigate whether or not perturbative unitarity is preserved in the Unhiggs model for the scattering process of heavy quarks and longitudinal gauge bosons $\bar q q \to V_L^+ V_L^-$. With the Yukawa coupling given in the original formulation of the Unhiggs model, the model preserves unitarity for Unhiggs scaling dimensions $d\leq 1.5$. Read More