# Christian D. Ott - TAPIR, Caltech

## Contact Details

NameChristian D. Ott |
||

AffiliationTAPIR, Caltech |
||

CityPasadena |
||

CountryUnited States |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Astrophysical Phenomena (32) General Relativity and Quantum Cosmology (20) Physics - Atomic Physics (9) Physics - Optics (5) Solar and Stellar Astrophysics (5) Nuclear Theory (3) Physics - Computational Physics (3) Physics - Chemical Physics (2) Cosmology and Nongalactic Astrophysics (1) High Energy Physics - Phenomenology (1) Quantum Physics (1) Physics - Atomic and Molecular Clusters (1) Physics - Fluid Dynamics (1) Physics - Mesoscopic Systems and Quantum Hall Effect (1) Physics - Disordered Systems and Neural Networks (1) Computer Science - Distributed; Parallel; and Cluster Computing (1) |

## Publications Authored By Christian D. Ott

We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion disks formed in neutron star mergers. We compute the element formation in disk outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disk evolution. We employ long-term axisymmetric hydrodynamic disk simulations to model the ejecta, and compute r-process nucleosynthesis with tracer particles using a nuclear reaction network containing $\sim 8000$ species. Read More

We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency (with the exception of possible black-hole formation effects). Read More

The observation of non-saturating classical linear magnetoresistivity has been an enigmatic phenomenon in solid state physics. We present a study of a two-dimensional ohmic conductor, including local Hall effect and a self-consistent consideration of the environment. An equivalent-circuit scheme delivers a simple and convincing argument why the magnetoresistivity is linear in strong magnetic field, provided that current and biasing electric field are misaligned by a nonlocal mechanism. Read More

We introduce a new relativistic astrophysics code, SpECTRE, that combines a discontinuous Galerkin method with a task-based parallelism model. SpECTRE's goal is to achieve more accurate solutions for challenging relativistic astrophysics problems such as core-collapse supernovae and binary neutron star mergers. The robustness of the discontinuous Galerkin method allows for the use of high-resolution shock capturing methods in regions where (relativistic) shocks are found, while exploiting high-order accuracy in smooth regions. Read More

**Affiliations:**

^{1}TAPIR, Caltech

How do massive stars explode? Progress toward the answer is driven by increases in compute power. Petascale supercomputers are enabling detailed three-dimensional simulations of core-collapse supernovae. These are elucidating the role of fluid instabilities, turbulence, and magnetic field amplification in supernova engines. Read More

We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_\odot$ progenitor in full unconstrained 3D and in octant symmetry for $\gtrsim$$ 380\,\mathrm{ms}$. Read More

Attosecond transient absorption spectroscopy has thus far been lacking the capability to simultaneously characterize the intense laser pulses at work within a time-resolved quantum-dynamics experiment. However, precise knowledge of these pulses is key to extracting quantitative information in strong-field highly nonlinear light-matter interactions. Here, we introduce and experimentally demonstrate an ultrafast metrology tool based on the time-delay-dependent phase shift imprinted on a strong-field driven resonance. Read More

We present results on the inspiral, merger, and post-merger evolution of a neutron star - neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for $\approx 22$ orbits before merger. Read More

The early rise of Type IIP supernovae (SN IIP) provides important information for constraining the properties of their progenitors. This can in turn be compared to pre-explosion imaging constraints and stellar models to develop a more complete picture of how massive stars evolve and end their lives. Using the SuperNova Explosion Code (SNEC), we model the first 40 days of SNe IIP to better understand what constraints can be derived from their early light curves. Read More

We study the development and saturation of the $m=1$ one-armed spiral instability in remnants of binary neutron star mergers by means of high-resolution long-term numerical relativity simulations. Our results suggest that this instability is a generic outcome of neutron stars mergers in astrophysically relevant configurations; including both "stiff" and "soft" nuclear equations of state. We find that, once seeded at merger, the $m=1$ mode saturates within $\sim 10\ \mathrm{ms}$ and persists over secular timescales. Read More

We present numerical-relativity simulations of spherically symmetric core collapse and compact-object formation in scalar-tensor theories of gravity. The additional scalar degree of freedom introduces a propagating monopole gravitational-wave mode. Detection of monopole scalar waves with current and future gravitational-wave experiments may constitute smoking gun evidence for strong-field modifications of General Relativity. Read More

During the merger of a black hole and a neutron star, baryonic mass can become unbound from the system. Because the ejected material is extremely neutron-rich, the r-process rapidly synthesizes heavy nuclides as the material expands and cools. In this work, we map general relativistic models of black hole-neutron star (BHNS) mergers into a Newtonian smoothed particle hydrodynamics (SPH) code and follow the evolution of the thermodynamics and morphology of the ejecta until the outflows become homologous. Read More

We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. Read More

We present results from the first large parameter study of neutron star mergers using fully general relativistic simulations with finite-temperature microphysical equations of state and neutrino cooling. We consider equal and unequal-mass binaries drawn from the galactic population and simulate each binary with three different equations of state. Our focus is on the emission of energy and angular momentum in gravitational waves in the postmerger phase. Read More

Magnetohydrodynamic (MHD) turbulence is of key importance in many high-energy astrophysical systems, including black-hole accretion disks, protoplanetary disks, neutron stars, and stellar interiors. MHD instabilities can amplify local magnetic field strength over very short time scales, but it is an open question whether this can result in the creation of a large scale ordered and dynamically relevant field. Specifically, the magnetorotational instability (MRI) has been suggested as a mechanism to grow magnetar-strength magnetic field ($\gtrsim 10^{15}\, \mathrm{G}$) and magnetorotationally power the explosion of a rotating massive star. Read More

Non-collinear four-wave mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step towards this goal we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. Read More

Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients, and radio emission. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and post-merger gravitational wave signals and their neutrinos and electromagnetic counterparts. Read More

We present results from high-resolution semi-global simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parametrized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in re-distributing energy and momentum through the gain region. Read More

Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. Read More

**Affiliations:**

^{1}TAPIR, Caltech,

^{2}Berkeley,

^{3}NC State,

^{4}Berkeley,

^{5}TAPIR, Caltech

**Category:**High Energy Astrophysical Phenomena

We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. Read More

**Authors:**Veit Stooß

^{1}, Andreas Kaldun

^{2}, Christian Ott

^{3}, Alexander Blättermann

^{4}, Thomas Ding

^{5}, Thomas Pfeifer

^{6}

**Affiliations:**

^{1}Max Planck Institute for Nuclear Physics Heidelberg Germany,

^{2}Max Planck Institute for Nuclear Physics Heidelberg Germany,

^{3}Max Planck Institute for Nuclear Physics Heidelberg Germany,

^{4}Max Planck Institute for Nuclear Physics Heidelberg Germany,

^{5}Max Planck Institute for Nuclear Physics Heidelberg Germany,

^{6}Max Planck Institute for Nuclear Physics Heidelberg Germany

**Category:**Physics - Atomic Physics

In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Read More

We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1. Read More

Gravitational waves (GW) generated during a core-collapse supernova open a window into the heart of the explosion. At core bounce, progenitors with rapid core rotation rates exhibit a characteristic GW signal which can be used to constrain the properties of the core of the progenitor star. We investigate the dynamics of rapidly rotating core collapse, focusing on hydrodynamic waves generated by the core bounce and the GW spectrum they produce. Read More

(Abridged) In the implicit large eddy simulation (ILES) paradigm, the dissipative nature of high-resolution shock-capturing schemes is exploited to provide an implicit model of turbulence. Recent 3D simulations suggest that turbulence might play a crucial role in core-collapse supernova explosions, however the fidelity with which turbulence is simulated in these studies is unclear. Especially considering that the accuracy of ILES for the regime of interest in CCSN, weakly compressible and strongly anisotropic, has not been systematically assessed before. Read More

Fast radio bursts (FRBs) are an emerging class of short and bright radio transients whose sources remain enigmatic. Within the galactic center, the non-detection of pulsars within the inner $\sim \!10\,{\rm pc}$ has created a missing pulsar problem that has intensified with time. With all reserve, we advance the notion that the two problems could be linked by a common solution: the collapse of neutron stars (NS) due to capture and sedimentation of dark matter (DM) within their cores. Read More

The neutrino-heated "gain layer" immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically-symmetric (1D) and axisymmetric (2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a $15$-$M_\odot$ progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Read More

A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. Read More

**Affiliations:**

^{1}Dept. of Physics, University of Oregon,

^{2}Dept. of Physics, University of Oregon,

^{3}TAPIR, Caltech

We present a new multivariate regression model for analysis and parameter estimation of gravitational waves observed from well but not perfectly modeled sources such as core-collapse supernovae. Our approach is based on a principal component decomposition of simulated waveform catalogs. Instead of reconstructing waveforms by direct linear combination of physically meaningless principal components, we solve via least squares for the relationship that encodes the connection between chosen physical parameters and the principal component basis. Read More

Dynamical instabilities in protoneutron stars may produce gravitational waves whose observation could shed light on the physics of core-collapse supernovae. When born with sufficient differential rotation, these stars are susceptible to a shear instability (the "low-T/|W| instability"), but such rotation can also amplify magnetic fields to strengths where they have a considerable impact on the dynamics of the stellar matter. Using a new magnetohydrodynamics module for the Spectral Einstein Code, we have simulated a differentially-rotating neutron star in full 3D to study the effects of magnetic fields on this instability. Read More

We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_\odot-10M_\odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperature nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted ($\chi_{\rm BH}\gtrsim 0.7$), we show that the merger consistently produces large amounts of cool ($T\lesssim 1\,{\rm MeV}$), unbound, neutron-rich material ($M_{\rm ej}\sim 0. Read More

We demonstrate a two-dimensional time-domain spectroscopy method to extract amplitude and phase modifications of excited atomic states caused by the interaction with ultrashort laser pulses. The technique is based on Fourier analysis of the absorption spectrum of perturbed polarization decay. An analytical description of the method reveals how amplitude and phase information can be directly obtained from measurements. Read More

Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the x-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise x-ray atomic clocks may also be envisaged. Read More

**Affiliations:**

^{1}TAPIR, Caltech,

^{2}TAPIR, Caltech,

^{3}TAPIR, Caltech,

^{4}TAPIR, Caltech

The late collapse, core bounce, and the early postbounce phase of rotating core collapse leads to a characteristic gravitational wave (GW) signal. The precise shape of the signal is governed by the interplay of gravity, rotation, nuclear equation of state (EOS), and electron capture during collapse. We explore the dependence of the signal on total angular momentum and its distribution in the progenitor core by means of a large set of axisymmetric general-relativistic core collapse simulations in which we vary the initial angular momentum distribution in the core. Read More

A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum system's dipole response. We develop an analytic description of the comb spectral structure, depending on both the atomic and the phase-control properties. Read More

Multi-dimensional simulations of advanced nuclear burning stages of massive stars suggest that the Si/O layers of presupernova stars harbor large deviations from the spherical symmetry typically assumed for presupernova stellar structure. We carry out three-dimensional core-collapse supernova simulations with and without aspherical velocity perturbations to assess their potential impact on the supernova hydrodynamics in the stalled shock phase. Our results show that realistic perturbations can qualitatively alter the postbounce evolution, triggering an explosion in a model that fails to explode without them. Read More

We present the new general-relativistic magnetohydrodynamics (GRMHD) capabilities of the Einstein Toolkit, an open-source community-driven numerical relativity and computational relativistic astrophysics code. The GRMHD extension of the Toolkit builds upon previous releases and implements the evolution of relativistic magnetised fluids in the ideal MHD limit in fully dynamical spacetimes using the same shock-capturing techniques previously applied to hydrodynamical evolution. In order to maintain the divergence-free character of the magnetic field, the code implements both hyperbolic divergence cleaning and constrained transport schemes. Read More

Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state and neutrino feedback are needed. Read More

Symmetric Lorentzian and asymmetric Fano line shapes are fundamental spectroscopic signatures that quantify the structural and dynamical properties of nuclei, atoms, molecules, and solids. This study introduces a universal temporal-phase formalism, mapping the Fano asymmetry parameter q to a phase {\phi} of the time-dependent dipole-response function. The formalism is confirmed experimentally by laser-transforming Fano absorption lines of autoionizing helium into Lorentzian lines after attosecond-pulsed excitation. Read More

Black hole-neutron star mergers resulting in the disruption of the neutron star and the formation of an accretion disk and/or the ejection of unbound material are prime candidates for the joint detection of gravitational-wave and electromagnetic signals when the next generation of gravitational-wave detectors comes online. However, the disruption of the neutron star and the properties of the post-merger remnant are very sensitive to the parameters of the binary. In this paper, we study the impact of the radius of the neutron star and the alignment of the black hole spin for systems within the range of mass ratio currently deemed most likely for field binaries (M_BH ~ 7 M_NS) and for black hole spins large enough for the neutron star to disrupt (J/M^2=0. Read More

Strong-field manipulation of autoionizing states is a crucial aspect of electronic quantum control. Recent measurements of the attosecond transient absorption spectrum of helium dressed by a few-cycle visible pulse [Ott et al., arXiv:1205. Read More

Core-collapse supernovae may depend sensitively on charged current neutrino interactions in warm, low density neutron rich matter. A proton in neutron rich matter is more tightly bound than is a neutron. This energy shift \Delta U increases the electron energy in \nu_e + n --> p + e, increasing the available phase space and absorption cross section. Read More

**Affiliations:**

^{1}AEI,

^{2}Caltech,

^{3}AEI,

^{4}Caltech

Recent work by McClarren & Hauck [29] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. Read More

We perform spherically-symmetric general-relativistic simulations of core collapse and the postbounce preexplosion phase in 32 presupernova stellar models of solar metallicity with zero-age-main-sequence masses of 12 M_{sun} to 120 M_{sun}. Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness (~M/R) of the progenitor star's inner regions via the accretion rate in the preexplosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state, but quantitative observational statements will require independent constraints on the equation of state and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. Read More

The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes and chemical reactions. It is thus a long-standing scientific dream to measure the dynamics of two bound correlated electrons in the quantum regime. Quantum wave packets were previously observed for single-active electrons on their natural attosecond timescales. Read More

**Authors:**Ernazar Abdikamalov

^{1}, Adam Burrows

^{2}, Christian D. Ott

^{3}, Frank Löffler

^{4}, Evan O'Connor

^{5}, Joshua C. Dolence

^{6}, Erik Schnetter

^{7}

**Affiliations:**

^{1}Caltech,

^{2}Princeton,

^{3}Caltech,

^{4}LSU,

^{5}Caltech,

^{6}Princeton,

^{7}Perimeter Institute

Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. Read More

We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity, objects that are proposed as likely progenitors of long-duration gamma-ray bursts (LGRBs). We perform 1D+rotation stellar-collapse simulations on the progenitor models of Woosley & Heger (2006) and critically assess their potential for the formation of a black hole and a Keplerian disk (namely a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromises the accuracy of stellar-evolution models. Read More

We describe the Einstein Toolkit, a community-driven, freely accessible computational infrastructure intended for use in numerical relativity, relativistic astrophysics, and other applications. The Toolkit, developed by a collaboration involving researchers from multiple institutions around the world, combines a core set of components needed to simulate astrophysical objects such as black holes, compact objects, and collapsing stars, as well as a full suite of analysis tools. The Einstein Toolkit is currently based on the Cactus Framework for high-performance computing and the Carpet adaptive mesh refinement driver. Read More

Time-resolved measurements of quantum dynamics are based on the availability of controlled events (e.g. pump and probe pulses) that are shorter in duration than the typical evolution time scale of the dynamical processes to be observed. Read More

Two- and multi-dimensional spectroscopy is used in physics and chemistry to obtain structural and dynamical information that would otherwise be invisible by the projection into a one-dimensional data set such as a single emission or absorption spectrum. Here, we introduce a qualitatively new two-dimensional spectroscopy method by employing the carrier-envelope phase (CEP). Instead of measuring spectral vs. Read More

We explore the effects of collective neutrino flavor oscillations due to neutrino-neutrino interactions on the neutrino heating behind a stalled core-collapse supernova shock. We carry out axisymmetric (2D) radiation-hydrodynamic core-collapse supernova simulations, tracking the first 400 ms of the post-core-bounce evolution in 11.2 solar mass and 15 solar mass progenitor stars. Read More