Chris W. Purcell - UC Irvine

Chris W. Purcell
Are you Chris W. Purcell?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Chris W. Purcell
Affiliation
UC Irvine
City
Irvine
Country
United States

Pubs By Year

External Links

Pub Categories

 
Astrophysics of Galaxies (9)
 
Cosmology and Nongalactic Astrophysics (7)
 
Astrophysics (5)
 
High Energy Physics - Phenomenology (1)

Publications Authored By Chris W. Purcell

2017May
Affiliations: 1U Pittsburgh/PITT PACC, 2U Pittsburgh/PITT PACC, 3U Pittsburgh/PITT PACC, 4RIT/CCRG, 5Yale, 6CfA/Harvard, 7Yale, 8U Pittsburgh/PITT PACC, 9Yale

Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, $\Delta$. Read More

It is increasingly apparent that common merger events play a large role in the evolution of disk galaxies at all cosmic times, from the wet accretion of gas-filled dwarf galaxies during the era of peak star formation, to the collisions between large, dynamically-advanced spiral galaxies and their dry companion satellites, a type of interaction that continues to influence disk structure into the present day. We also live in a large spiral galaxy currently undergoing a series of impacts from an infalling, disrupting dwarf galaxy. As next-generation astrometry proposes to place our understanding of the Milky Way spiral structure on a much firmer footing, we analyze high-resolution numerical models of this disk-satellite interaction in order to assess the dynamical response of our home Galaxy to the Sagittarius dwarf impact, and possible implications for experiments hoping to directly detect dark matter passing through the Earth. Read More

We present an analysis of high-resolution N-body simulations of decaying dark matter cosmologies focusing on the statistical properties of the transmitted Lyman-alpha forest flux in the high-redshift intergalactic medium. In this type of model a dark matter particle decays into a slightly less massive stable dark matter daughter particle and a comparably light particle. The small mass splitting provides a non-relativistic kick velocity V_k to the daughter particle resulting in free-streaming and subsequent damping of small-scale density fluctuations. Read More

Recent kinematical constraints on the internal densities of the Milky Way's dwarf satellites have revealed a discrepancy with the subhalo populations of simulated Galaxy-scale halos in the standard CDM model of hierarchical structure formation. This has been dubbed the "too big to fail" problem, with reference to the improbability of large and invisible companions existing in the Galactic environment. In this paper, we argue that both the Milky Way observations and simulated subhalos are consistent with the predictions of the standard model for structure formation. Read More

Recently, Widrow and collaborators announced the discovery of vertical density waves in the Milky Way disk. Here we investigate a scenario where these waves were induced by the Sagittarius dwarf galaxy as it plunged through the Galaxy. Using numerical simulations, we find that the Sagittarius impact produces North-South asymmetries and vertical wave-like behavior that qualitatively agrees with what is observed. Read More

We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280" (~5. Read More

We analyze self-consistent N-body simulations of the Milky Way disk and the ongoing disruption of the Sagittarius dwarf satellite to study the effect of Sagittarius tidal debris on dark matter detection experiments. In agreement with significant previous work, we reiterate that the standard halo model is insufficient to describe the non-Maxwellian velocity distribution of the Milky Way halo in our equilibrium halo-only and halo/galaxy models, and offer suggestions for correcting for this discrepancy. More importantly, we emphasize that the dark matter component of the leading tidal arm of the Sagittarius dwarf is significantly more extended than the stellar component of the arm, since the dark matter and stellar streams are not necessarily coaxial and may be offset by several kpc at the point at which they impact the Galactic disk. Read More

It is now known that minor mergers are capable of creating structure in the phase-space distribution of their host galaxy's disc. In order to search for such imprints in the Milky Way, we analyse the SEGUE F/G-dwarf and the Schuster et al. (2006) stellar samples. Read More

Like many galaxies of its size, the Milky Way is a disk with prominent spiral arms rooted in a central bar, although our knowledge of its structure and origin is incomplete. Traditional attempts to understand the Galaxy's morphology assume that it has been unperturbed by major external forces. Here we report simulations of the response of the Milky Way to the infall of the Sagittarius dwarf galaxy (Sgr), which results in the formation of spiral arms, influences the central bar and produces a flared outer disk. Read More

Minor accretion events with mass ratio M_sat : M_host ~ 1:10 are common in the context of LCDM cosmology. We use high-resolution simulations of Galaxy-analogue systems to show that these mergers can dynamically eject disk stars into a diffuse light component that resembles a stellar halo both spatially and kinematically. For a variety of orbital configurations, we find that ~3-5e8 M_sun of primary stellar disk material is ejected to a distance larger than 5 kpc above the galactic plane. Read More

Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. Read More

2008Nov
Affiliations: 1UC Irvine, 2UC Irvine, 3UC Irvine
Category: Astrophysics

Disk galaxies are common in our universe and this is a source of concern for hierarchical formation models like LCDM. Here we investigate this issue as motivated by raw merger statistics derived for galaxy-size dark matter halos from LCDM simulations. Our analysis shows that a majority (~70%) of galaxy halos with M = 10^12 M_sun at z=0 should have accreted at least one object with mass m > 10^11 M_sun ~ 3 M_disk over the last 10 Gyr. Read More

Most Galaxy-sized systems (M_host ~ 10^12 M_sun) in the LCDM cosmology are expected to have accreted at least one satellite with a total mass M_sat ~ 10^11 M_sun = 3M_disk in the past 8 Gyr. Analytic and numerical investigations suggest that this is the most precarious type of merger for the survival of thin galactic disks because more massive accretion events are relatively rare and less massive ones preserve thin disk components. We use high-resolution, dissipationless N-body simulations to study the response of an initially-thin, fully-formed Milky-Way type stellar disk to these cosmologically common events and show that the thin disk does not survive. Read More

We make predictions for the metallicity of diffuse stellar components in systems ranging from small spiral galaxies to rich galaxy clusters. We extend the formalism of Purcell et al. (2007), in which diffuse stellar mass is produced via galaxy disruption, and we convolve this result with the observed mass-metallicity relation for galaxies in order to analyze the chemical abundance of intrahalo light (IHL) in host halos with virial mass 10^10. Read More

2008Apr
Affiliations: 1UC Irvine, 2UC Irvine, 3UC Irvine, 4UC Irvine, 5UC Irvine, 6Stanford
Category: Astrophysics

We study the formation of fifty-three galaxy cluster-size dark matter halos formed within a pair of cosmological LCDM N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host 0.1L* galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no pre-processing in the group environment prior to their accretion into the cluster. Read More

2007Feb
Affiliations: 1UC Irvine, 2UC Irvine, 3KICP, The University of Chicago
Category: Astrophysics

We make predictions for diffuse stellar mass fractions in dark matter halos from the scales of small spiral galaxies to those of large galaxy clusters. We use an extensively-tested analytic model for subhalo infall and evolution and empirical constraints from galaxy survey data to set the stellar mass in each accreted subhalo to model diffuse light. We add stellar mass to the diffuse light as subhalos become disrupted due to interactions within their host halos. Read More