Chao Liu - NAOC

Chao Liu
Are you Chao Liu?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Chao Liu
Affiliation
NAOC
Location

Pubs By Year

Pub Categories

 
Astrophysics of Galaxies (19)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (14)
 
Solar and Stellar Astrophysics (10)
 
Physics - Materials Science (8)
 
Computer Science - Computation and Language (5)
 
Physics - Strongly Correlated Electrons (5)
 
Computer Science - Digital Libraries (4)
 
Computer Science - Information Retrieval (3)
 
Computer Science - Learning (3)
 
Physics - Superconductivity (3)
 
Physics - Optics (1)
 
Computer Science - Computers and Society (1)
 
Mathematics - Analysis of PDEs (1)
 
Statistics - Machine Learning (1)
 
General Relativity and Quantum Cosmology (1)
 
Cosmology and Nongalactic Astrophysics (1)
 
Instrumentation and Methods for Astrophysics (1)
 
Statistics - Methodology (1)

Publications Authored By Chao Liu

A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21~cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650 - 1420 MHz range. Read More

With a sample of 48,161 K giant stars selected from the LAMOST DR 2 catalogue, we construct torus models in a large volume extending, for the first time, from the solar vicinity to a Galactocentric distance of $\sim 20$ kpc, reaching the outskirts of the Galactic disc. We show that the kinematics of the K giant stars match conventional models, e.g. Read More

We present stellar density maps of the Galactic outer disc with red clump stars from the LAMOST data. These samples are separated into younger (mean age ~ 2.7 Gyr) and older (mean age ~ 4. Read More

In this work, we construct a generalized Kane model with a new coupling term between itinerant electron spins and local magnetic moments of anti-ferromagnetic ordering in order to describe the low energy effective physics in a large family of anti-ferromagnetic half-Heusler materials. Topological properties of this generalized Kane model is studied and a large variety of topological phases, including Dirac semimetal phase, Weyl semimetal phase, nodal line semimetal phase, type-B triple point semimetal phase, topological mirror (or glide) insulating phase and anti-ferromagnetic topological insulating phase, are identified in different parameter regions of our effective models. In particular, we find that the system is always driven into the anti-ferromagnetic topological insulator phase once a bulk band gap is open, irrespective of the magnetic moment direction, thus providing a robust realization of anti-ferromagentic topological insulators. Read More

We combine Gaia DR1, PS1, SDSS and 2MASS astrometry to measure proper motions for 350 million sources across three-fourths of the sky down to a magnitude of $m_r\sim20$\,. Using positions of galaxies from PS1, we build a common reference frame for the multi-epoch PS1, single-epoch SDSS and 2MASS data, and calibrate the data in small angular patches to this frame. As the Gaia DR1 excludes resolved galaxy images, we choose a different approach to calibrate its positions to this reference frame: we exploit the fact that the proper motions of stars in these patches are {\it linear}. Read More

2017Feb
Authors: Michael R. Blanton, Matthew A. Bershady, Bela Abolfathi, Franco D. Albareti, Carlos Allende Prieto, Andres Almeida, Javier Alonso-García, Friedrich Anders, Scott F. Anderson, Brett Andrews, Erik Aquino-Ortíz, Alfonso Aragón-Salamanca, Maria Argudo-Fernández, Eric Armengaud, Eric Aubourg, Vladimir Avila-Reese, Carles Badenes, Stephen Bailey, Kathleen A. Barger, Jorge Barrera-Ballesteros, Curtis Bartosz, Dominic Bates, Falk Baumgarten, Julian Bautista, Rachael Beaton, Timothy C. Beers, Francesco Belfiore, Chad F. Bender, Andreas A. Berlind, Mariangela Bernardi, Florian Beutler, Jonathan C. Bird, Dmitry Bizyaev, Guillermo A. Blanc, Michael Blomqvist, Adam S. Bolton, Médéric Boquien, Jura Borissova, Remco van den Bosch, Jo Bovy, William N. Brandt, Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Adam J. Burgasser, Etienne Burtin, Nicolás G. Busca, Michele Cappellari, Maria Leticia Delgado Carigi, Joleen K. Carlberg, Aurelio Carnero Rosell, Ricardo Carrera, Brian Cherinka, Edmond Cheung, Yilen Gómez Maqueo Chew, Cristina Chiappini, Peter Doohyun Choi, Drew Chojnowski, Chia-Hsun Chuang, Haeun Chung, Rafael Fernando Cirolini, Nicolas Clerc, Roger E. Cohen, Johan Comparat, Luiz da Costa, Marie-Claude Cousinou, Kevin Covey, Jeffrey D. Crane, Rupert A. C. Croft, Irene Cruz-Gonzalez, Daniel Garrido Cuadra, Katia Cunha, Guillermo J. Damke, Jeremy Darling, Roger Davies, Kyle Dawson, Axel de la Macorra, Nathan De Lee, Timothée Delubac, Francesco Di Mille, Aleks Diamond-Stanic, Mariana Cano-Díaz, John Donor, Juan José Downes, Niv Drory, Hélion du Mas des Bourboux, Christopher J. Duckworth, Tom Dwelly, Jamie Dyer, Garrett Ebelke, Daniel J. Eisenstein, Eric Emsellem, Mike Eracleous, Stephanie Escoffier, Michael L. Evans, Xiaohui Fan, Emma Fernández-Alvar, J. G. Fernandez-Trincado, Diane K. Feuillet, Alexis Finoguenov, Scott W. Fleming, Andreu Font-Ribera, Alexander Fredrickson, Gordon Freischlad, Peter M. Frinchaboy, Lluís Galbany, R. Garcia-Dias, D. A. García-Hernández, Patrick Gaulme, Doug Geisler, Joseph D. Gelfand, Héctor Gil-Marín, Bruce A. Gillespie, Daniel Goddard, Violeta Gonzalez-Perez, Kathleen Grabowski, Paul J. Green, Catherine J. Grier, James E. Gunn, Hong Guo, Julien Guy, Alex Hagen, ChangHoon Hahn, Matthew Hall, Paul Harding, Sten Hasselquist, Suzanne L. Hawley, Fred Hearty, Jonay I. Gonzalez Hernández, Shirley Ho, David W. Hogg, Kelly Holley-Bockelmann, Jon A. Holtzman, Parker H. Holzer, Joseph Huehnerhoff, Timothy A. Hutchinson, Ho Seong Hwang, Héctor J. Ibarra-Medel, Gabriele da Silva Ilha, Inese I. Ivans, KeShawn Ivory, Kelly Jackson, Trey W. Jensen, Jennifer A. Johnson, Amy Jones, Henrik Jönsson, Eric Jullo, Vikrant Kamble, Karen Kinemuchi, David Kirkby, Francisco-Shu Kitaura, Mark Klaene, Gillian R. Knapp, Jean-Paul Kneib, Juna A. Kollmeier, Ivan Lacerna, Richard R. Lane, Dustin Lang, David R. Law, Daniel Lazarz, Jean-Marc Le Goff, Fu-Heng Liang, Cheng Li, Hongyu LI, Marcos Lima, Lihwai Lin, Yen-Ting Lin, Sara Bertran de Lis, Chao Liu, Miguel Angel C. de Icaza Lizaola, Dan Long, Sara Lucatello, Britt Lundgren, Nicholas K. MacDonald, Alice Deconto Machado, Chelsea L. MacLeod, Suvrath Mahadevan, Marcio Antonio Geimba Maia, Roberto Maiolino, Steven R. Majewski, Elena Malanushenko, Viktor Malanushenko, Arturo Manchado, Shude Mao, Claudia Maraston, Rui Marques-Chaves, Karen L. Masters, Cameron K. McBride, Richard M. McDermid, Brianne McGrath, Ian D. McGreer, Nicolás Medina Peña, Matthew Melendez, Andrea Merloni, Michael R. Merrifield, Szabolcs Meszaros, Andres Meza, Ivan Minchev, Dante Minniti, Takamitsu Miyaji, Surhud More, John Mulchaey, Francisco Müller-Sánchez, Demitri Muna, Ricardo R. Munoz, Adam D. Myers, Preethi Nair, Kirpal Nandra, Janaina Correa do Nascimento, Alenka Negrete, Melissa Ness, Jeffrey A. Newman, Robert C. Nichol, David L. Nidever, Christian Nitschelm, Pierros Ntelis, Julia E. O'Connell, Ryan J. Oelkers, Audrey Oravetz, Daniel Oravetz, Zach Pace, Nelson Padilla, Nathalie Palanque-Delabrouille, Pedro Alonso Palicio, Kaike Pan, Taniya Parikh, Isabelle Pâris, Changbom Park, Alim Y. Patten, Sebastien Peirani, Marcos Pellejero-Ibanez, Samantha Penny, Will J. Percival, Ismael Perez-Fournon, Patrick Petitjean, Matthew M. Pieri, Marc Pinsonneault, Alice Pisani, Radosław Poleski, Francisco Prada, Abhishek Prakash, Anna Bárbara de Andrade Queiroz, M. Jordan Raddick, Anand Raichoor, Sandro Barboza Rembold, Hannah Richstein, Rogemar A. Riffel, Rogério Riffel, Hans-Walter Rix, Annie C. Robin, Constance M. Rockosi, Sergio Rodríguez-Torres, A. Roman-Lopes, Carlos Román-Zúñiga, Margarita Rosado, Ashley J. Ross, Graziano Rossi, John Ruan, Rossana Ruggeri, Eli S. Rykoff, Salvador Salazar-Albornoz, Mara Salvato, Ariel G. Sánchez, David Sánchez Aguado, José R. Sánchez-Gallego, Felipe A. Santana, Basílio Xavier Santiago, Conor Sayres, Ricardo P. Schiavon, Jaderson da Silva Schimoia, Edward F. Schlafly, David J. Schlegel, Donald P. Schneider, Mathias Schultheis, William J. Schuster, Axel Schwope, Hee-Jong Seo, Zhengyi Shao, Shiyin Shen, Matthew Shetrone, Michael Shull, Joshua D. Simon, Danielle Skinner, M. F. Skrutskie, Anže Slosar, Verne V. Smith, Jennifer S. Sobeck, Flavia Sobreira, Garrett Somers, Diogo Souto, David V. Stark, Keivan Stassun, Fritz Stauffer, Matthias Steinmetz, Thaisa Storchi-Bergmann, Alina Streblyanska, Guy S. Stringfellow, Genaro Suárez, Jing Sun, Nao Suzuki, Laszlo Szigeti, Manuchehr Taghizadeh-Popp, Baitian Tang, Charling Tao, Jamie Tayar, Mita Tembe, Johanna Teske, Aniruddha R. Thakar, Daniel Thomas, Benjamin A. Thompson, Jeremy L. Tinker, Patricia Tissera, Rita Tojeiro, Hector Hernandez Toledo, Sylvain de la Torre, Christy Tremonti, Nicholas W. Troup, Octavio Valenzuela, Inma Martinez Valpuesta, Jaime Vargas-González, Mariana Vargas-Magaña, Jose Alberto Vazquez, Sandro Villanova, M. Vivek, Nicole Vogt, David Wake, Rene Walterbos, Yuting Wang, Benjamin Alan Weaver, Anne-Marie Weijmans, David H. Weinberg, Kyle B. Westfall, David G. Whelan, Vivienne Wild, John Wilson, W. M. Wood-Vasey, Dominika Wylezalek, Ting Xiao, Renbin Yan, Meng Yang, Jason E. Ybarra, Christophe Yèche, Nadia Zakamska, Olga Zamora, Pauline Zarrouk, Gail Zasowski, Kai Zhang, Gong-Bo Zhao, Zheng Zheng, Zhi-Min Zhou, Guangtun B. Zhu, Manuela Zoccali, Hu Zou

We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratio in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially-resolved spectroscopy for thousands of nearby galaxies (median redshift of z = 0. Read More

We study interaction effect of quantum spin Hall state in InAs/GaSb quantum wells under an in-plane magnetic field by using the self-consistent mean field theory. We construct a phase diagram as a function of intra-layer and inter-layer interactions, and identify two novel phases, a charge/spin density wave phase and an exciton condensate phase. The charge/spin density wave phase is topologically non-trivial with helical edge transport at the boundary, while the exciton condensate phase is topologically trivial. Read More

We derive the mean velocity components at various Galactocentric radii from 8 to 14 kpc using about 40,000 red clump stars observed in the LAMOST survey. We find that the vertical bulk motion for younger red clump stars are significantly larger than that for the older red clump stars. This is likely the kinematical feature of the Galactic warp around its line-of-node, which is located close to the Galactic anti-center region. Read More

This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamic filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. For quantifying the causal dependency, a mutual information based metric is presented. Read More

We have found Dirac nodal lines (DNLs) in the band structures of metallic rutile oxides IrO$_2$, OsO$_2$, and RuO$_2$ and revealed a large spin Hall conductivity contributed by these nodal lines, which explains a strong spin Hall effect (SHE) of IrO$_2$ discovered recently. Two types of DNLs exist. The first type forms DNL networks that extend in the whole Brillouin zone and appears only in the absence of spin-orbit coupling (SOC), which induces surface states on the boundary. Read More

We present a statistical method to derive the stellar density profiles of the Milky Way from spectroscopic survey data, taking into account selection effects. We assume that the selection function of the spectroscopic survey is only based on photometric colors and magnitudes. Then the underlying selection function can be well recovered by comparing the distribution of the spectroscopic stars in a color-magnitude plane with that of the photometric dataset. Read More

We establish the existence of $1$-parameter families of $\epsilon$-dependent solutions to the Einstein-Euler equations with a positive cosmological constant $\Lambda >0$ and a linear equation of state $p=\epsilon^2 K \rho$, $0Read More

Using the LAMOST-Gaia common stars, we demonstrate that the in-plane velocity field for the nearby young stars are significantly different from that for the old ones. For the young stars, the probably perturbed velocities similar to the old population are mostly removed from the velocity maps in the $X$--$Y$ plane. The residual velocity field shows that the young stars consistently move along $Y$ with faster $v_\phi$ at the trailing side of the local arm, while at the leading side, they move slower in azimuth direction. Read More

Large-scale comparisons between the poetry of Tang and Song dynasties shed light on how words, collocations, and expressions were used and shared among the poets. That some words were used only in the Tang poetry and some only in the Song poetry could lead to interesting research in linguistics. That the most frequent colors are different in the Tang and Song poetry provides a trace of the changing social circumstances in the dynasties. Read More

We investigated the reliability of our silicon atomic model and the influence of non-local thermodynamical equilibrium (NLTE) on the formation of neutral silicon (Si I) lines in the near-infrared (near-IR) H-band. We derived the differential Si abundances for 13 sample stars with high-resolution H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as well as from optical spectra, both under local thermodynamical equilibrium (LTE) and NLTE conditions. We found that the differences between the Si abundances derived from the H-band and from optical lines for the same stars are less than 0. Read More

Aiming at testing the validity of our magnesium atomic model and investigating the effects of non-local thermodynamical equilibrium (NLTE) on the formation of the H-band neutral magnesium lines, we derive the differential Mg abundances from selected transitions for 13 stars either adopting or relaxing the assumption of local thermodynamical equilibrium (LTE). Our analysis is based on high-resolution and high signal-to-noise ratio H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and optical spectra from several instruments. The absolute differences between the Mg abundances derived from the two wavelength bands are always less than 0. Read More

In this work, we study the transport through a quantum point contact for two-channel interacting helical liquids that exist at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for a weak repulsive interaction in the BSPT state, while either charge insulator/spin insulator or charge conductor/spin conductor phase is expected for the two-channel QSH state. Read More

Influence diagnosis is an integrated component of data analysis, but is severely under-investigated in a high-dimensional setting. One of the key challenges, even in a fixed-dimensional setting, is how to deal with multiple influential points giving rise to the masking and swamping effects. This paper proposes a novel group deletion procedure referred to as MIP by studying two extreme statistics based on a marginal correlation based influence measure. Read More

2016Sep
Affiliations: 1Caltech, MPIA, 2MPIA, 3MPIA, 4SCDA, NYU, MPIA, 5Key Laboratory of Optical Astronomy, 6Harvard

We measure carbon and nitrogen abundances to $\lesssim$ 0.1 dex for 450,000 giant stars from their low-resolution (R$\sim$1800) LAMOST DR2 survey spectra. We use these [C/M] and [N/M] measurements, together with empirical relations based on the APOKASC sample, to infer stellar masses and implied ages for 230,000 of these objects to 0. Read More

Tang (618-907 AD) and Song (960-1279) dynasties are two very important periods in the development of Chinese literary. The most influential forms of the poetry in Tang and Song were Shi and Ci, respectively. Tang Shi and Song Ci established crucial foundations of the Chinese literature, and their influences in both literary works and daily lives of the Chinese communities last until today. Read More

Bilayer transition metal dichalcogenides (TMDs) belong to a class of materials with two unique features, the coupled spin-valley-layer degrees of freedom and the crystal structure that is globally centrosymmetric but locally non-centrosymmetric. In this work, we will show that the combination of these two features can lead to a rich phase diagram for unconventional superconductivity, including intra-layer and inter-layer singlet pairings and inter-layer triplet pairings, in bilayer superconducting TMDs. In particular, we predict that the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state can exist in bilayer TMDs under an in-plane magnetic field. Read More

We study the interaction effects on thin films of topological mirror Kondo insulators (TMKI), where the strong interaction is expected to play an important role. Our study has led to the following results: (1) We identify a rich phase diagram of non-interacting TMKI with different mirror Chern numbers in the monolayer and bilayer thin films; (2) We obtain the phase diagram with interaction and identify the regimes of interaction parameters to mimic bosonic symmetry protected topological phases with either gapless bosonic modes or spontaneous mirror symmetry breaking at the boundary; (3) For the spontaneous mirror symmetry breaking boundary, we also study various domain-wall defects between different mirror symmetry breaking order parameters at the boundary. Our results reveal that the thin film TMKI serves as an intriguing platform for the experimental studies of interacting topological phases. Read More

In this work, we present the new catalog of carbon stars from the LAMOST DR2 catalog. In total, 894 carbon stars are identified from multiple line indices measured from the stellar spectra. Combining the CN bands in the red end with \ctwo\ and other lines, we are able to identify the carbon stars. Read More

In this work, we studied time-reversal-breaking topological phases as a result of the interplay between antiferromagnetism and inverted band structures in thin films of antiferromagnetic double perovskite transition-metal Sr$_2$FeOsO$_6$. By combining the first-principles calculations and analytical models, we demonstrate that the quantum anomalous Hall phase and chiral topological superconducting phase can be realized in this system. We find that to achieve time-reversal-breaking topological phases in antiferromagnetic materials, it is essential to break the combined symmetry of time reversal and inversion, which generally exists in antiferromagnetic structures. Read More

Modern distributed cyber-physical systems encounter a large variety of anomalies and in many cases, they are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among the sub-systems. In this regard, root-cause analysis becomes highly intractable due to complex fault propagation mechanisms in combination with diverse operating modes. This paper presents a new data-driven framework for root-cause analysis for addressing such issues. Read More

Dirac semimetal is a class of semi-metallic phase protected by certain types of crystalline symmetries, and its low-energy effective Hamiltonian is described by Dirac equations in three dimensions (3D). Despite of various theoretical studies, theories that describe the topological nature of Dirac semimetals have not been well established. In this work, we define a topological invariant for 3D Dirac semimetals by establishing a mapping between a 3D Dirac semimetal and a topological crystalline insulator in four dimension (4D). Read More

Asteroseismology is a powerful tool to precisely determine the evolutionary status and fundamental properties of stars. With the unprecedented precision and nearly continuous photometric data acquired by the NASA Kepler mission, parameters of more than 10$^4$ stars have been determined nearly consistently. However, most studies still use photometric effective temperatures (Teff) and metallicities ([Fe/H]) as inputs, which are not sufficiently accurate as suggested by previous studies. Read More

We report two new tidal debris nearby the Sagittarius (Sgr) tidal stream in the north Galactic cap identified from the M giant stars in LAMOST DR2 data. The M giant stars with sky area of $210^\circ<$\Lambda$<290^\circ$, distance of 10--20kpc, and [Fe/H]$<-0.75$ show clear bimodality in velocity distribution. Read More

We present a catalogue including 11,204 spectra for 10,436 early-type emission-line stars from LAMOST DR2, among which 9,752 early-type emission-line spectra are newly discovered. For these early-type emission-line stars, we discuss the morphological and physical properties from their low-resolution spectra. In this spectral sample, the H$\alpha$ emission profiles display a wide variety of shapes. Read More

We present the peculiar in-plane velocities derived from the LAMOST red clump stars. From the variations of the in-plane velocity with the Galactocentric radius for the young and old red clump stars, we are able to identify two types of peculiar velocities: 1) both the two red clump populations show that the radial velocity is negative within $R=9.0$\,kpc and becomes positive beyond (denoted as the \emph{long-wave} mode); and 2) the young red clump stars show larger mean radial velocity than the old population by about 3\,km$\rm s^{-1}$ between $R=9$ and 12\,kpc (denoted as the \emph{short-wave} mode). Read More

The quantum spin Hall effect has been predicted theoretically and observed experimentally in InAs/GaSb quantum wells as a result of inverted band structures, for which electron bands in InAs layers are below heavy hole bands in GaSb layers in energy. The hybridization between electron bands and heavy hole bands leads to a hybridization gap away from k=0. A recent puzzling observation in experiments is that when the system is tuned to more inverted regime by a gate voltage (a larger inverted gap at k=0), the hybridization gap decreases. Read More

We derive the fraction of substructure in the Galactic halo using a sample of over 10,000 spectroscopically-confirmed halo giant stars from the LAMOST spectroscopic survey. By observing 100 synthetic models along each line of sight with the LAMOST selection function in that sky area, we statistically characterize the expected halo populations. We define as SHARDS (Stellar Halo Accretion Related Debris Structures) any stars in >3-sigma excesses above the model predictions. Read More

Using a spectroscopically confirmed sample of M-giants, M-dwarfs and quasars from the LAMOST survey, we assess how well WISE $\&$ 2MASS color-cuts can be used to select M-giant stars. The WISE bands are very efficient at separating M-giants from M-dwarfs and we present a simple classification that can produce a clean and relatively complete sample of M-giants. We derive a new photometric relation to estimate the metallicity for M-giants, calibrated using data from the APOGEE survey. Read More

The low energy physics of both graphene and surface states of three-dimensional topological insulators is described by gapless Dirac fermions with linear dispersion. In this work, we predict the emergence of a "heavy" Dirac fermion in a graphene/topological insulator hetero-junction, where the linear term almost vanishes and the corresponding energy dispersion becomes highly non-linear. By combining {\it ab initio} calculations and an effective low-energy model, we show explicitly how strong hybridization between Dirac fermions in graphene and the surface states of topological insulators can reduce the Fermi velocity of Dirac fermions. Read More

Bosonic symmetry protected topological (BSPT) states, the bosonic analogue of topological insulators, have attracted enormous theoretical interest in the last few years. Although BSPT states have been classified by various approaches, there is so far no successful experimental realization of any BSPT state in two or higher dimensions. In this paper, we propose that a two dimensional BSPT state with $U(1) \times U(1)$ symmetry can be realized in bilayer graphene in a magnetic field. Read More

2016Jan
Affiliations: 1Caltech, MPIA, 2MPIA, 3SCDA, NYU, MPIA, 4MPIA, 5Key Laboratory of Optical Astronomy, 6Key Laboratory of Optical Astronomy, 7NIAOT, 8NIAOT, 9NIAOT

In this era of large-scale stellar spectroscopic surveys, measurements of stellar attributes ("labels," i.e. parameters and abundances) must be made precise and consistent across surveys. Read More

We present a catalog of 166 spectroscopically identified hot subdwarf stars from LAMOST DR1, 44 of which show the characteristics of cool companions in their optical spectra. Atmospheric parameters of 122 non-composite spectra subdwarf stars were measured by fitting the profiles of hydrogen (H) and helium (He) lines with synthetic spectra from non-LTE model atmospheres. Most of the sdB stars scatter near the Extreme Horizontal Branch in the $T_{\rm eff}-\log{g}$ diagram and two well defined groups can be outlined. Read More

Modern distributed cyber-physical systems (CPSs) encounter a large variety of physical faults and cyber anomalies and in many cases, they are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among the sub-systems. This paper presents a new data-driven framework for system-wide anomaly detection for addressing such issues. The framework is based on a spatiotemporal feature extraction scheme built on the concept of symbolic dynamics for discovering and representing causal interactions among the subsystems of a CPS. Read More

Topological crystalline insulators are a class of materials with a bulk energy gap and edge or surface modes, which are protected by crystalline symmetry, at their boundaries. They have been realized in electronic systems: in particular, in SnTe. In this work, we propose a mechanism to realize photonic boundary states topologically protected by crystalline symmetry. Read More

Person names and location names are essential building blocks for identifying events and social networks in historical documents that were written in literary Chinese. We take the lead to explore the research on algorithmically recognizing named entities in literary Chinese for historical studies with language-model based and conditional-random-field based methods, and extend our work to mining the document structures in historical documents. Practical evaluations were conducted with texts that were extracted from more than 220 volumes of local gazetteers (Difangzhi). Read More

The Complete Tang Poems (CTP) is the most important source to study Tang poems. We look into CTP with computational tools from specific linguistic perspectives, including distributional semantics and collocational analysis. From such quantitative viewpoints, we compare the usage of "wind" and "moon" in the poems of Li Bai and Du Fu. Read More

Measurement of the local dark matter density plays an important role in both Galactic dynamics and dark matter direct detection experiments. However, the estimated values from previous works are far from agreeing with each other. In this work, we provide a well-defined observed sample with 1427 G \& K type main-sequence stars from the LAMOST spectroscopic survey, taking into account selection effects, volume completeness, and the stellar populations. Read More

We estimate the age for the individual stars located at the lower part of the red giant branch from the LAMOST DR2 K giant sample. Taking into account the selection effects and the volume completeness, the age--metallicity map for the stars located between 0.3 and 1. Read More

We analyzed historical and literary documents in Chinese to gain insights into research issues, and overview our studies which utilized four different sources of text materials in this paper. We investigated the history of concepts and transliterated words in China with the Database for the Study of Modern China Thought and Literature, which contains historical documents about China between 1830 and 1930. We also attempted to disambiguate names that were shared by multiple government officers who served between 618 and 1912 and were recorded in Chinese local gazetteers. Read More

The quantum anomalous Hall effect is defined as a quantized Hall effect realized in a system without external magnetic field. Quantum anomalous Hall effect is a novel manifestation of topological structure in many-electron systems, and may have potential applications in future electronic devices. In recent years, quantum anomalous Hall effect has been proposed theoretically and realized experimentally. Read More

We use about 200,000 FGK type main-sequence stars from the LAMOST DR1 data to map the local stellar kinematics. With the velocity de-projection technique, we are able to derive the averaged 3 dimensional velocity and velocity ellipsoids using only the line-of-sight velocity for the stars with various effective temperatures within $100 < |z| < 500$ pc. Using the mean velocities of the cool stars, we derive the solar motion of ($U_{\!\odot}$, $V_{\!\odot}$, $W_{\!\odot}$)=(9. Read More

Topological crystalline insulators define a new class of topological insulator phases with gapless surface states protected by crystalline symmetries. In this work, we present a general theory to classify topological crystalline insulator phases based on the representation theory of space groups. Our approach is to directly identify possible nontrivial surface states in a semi-infinite system with a specific surface, of which the symmetry property can be described by 17 two-dimensional space groups. Read More

In the quantum anomalous Hall effect, chiral edge modes are expected to conduct spin polarized current without dissipation and thus hold great promise for future electronics and spintronics with low energy consumption. However, spin polarization of chiral edge modes has never been established in experiments. In this work, we theoretically study spin polarization of chiral edge modes in the quantum anomalous Hall effect, based on both the effective model and more realistic tight-binding model constructed from the first principles calculations. Read More

Topological superconductors possess a nodeless superconducting gap in the bulk and gapless zero energy modes, known as "Majorana zero modes", at the boundary of a finite system. In this work, we introduce a new class of topological superconductors, which are protected by nonsymmorphic crystalline symmetry and thus dubbed "topological nonsymmorphic crystalline superconductors". We construct an explicit Bogoliubov-de Gennes type of model for this superconducting phase in the D class and show how Majorana zero modes in this model are protected by glide symmetry. Read More

In this work, we provide 2189 photometric- and kinematic-selected member candidates of 24 star clusters from the LAMOST DR2 catalog. We perform two-step membership identification: selection along the stellar track in the color-magnitude diagram, i.e. Read More