Carl Doersch

Carl Doersch
Are you Carl Doersch?

Claim your profile, edit publications, add additional information:

Contact Details

Carl Doersch

Pubs By Year

Pub Categories

Computer Science - Computer Vision and Pattern Recognition (4)
Computer Science - Learning (2)
Statistics - Machine Learning (1)

Publications Authored By Carl Doersch

In a given scene, humans can often easily predict a set of immediate future events that might happen. However, generalized pixel-level anticipation in computer vision systems is difficult because machine learning struggles with the ambiguity inherent in predicting the future. In this paper, we focus on predicting the dense trajectory of pixels in a scene, specifically what will move in the scene, where it will travel, and how it will deform over the course of one second. Read More

In just three years, Variational Autoencoders (VAEs) have emerged as one of the most popular approaches to unsupervised learning of complicated distributions. VAEs are appealing because they are built on top of standard function approximators (neural networks), and can be trained with stochastic gradient descent. VAEs have already shown promise in generating many kinds of complicated data, including handwritten digits, faces, house numbers, CIFAR images, physical models of scenes, segmentation, and predicting the future from static images. Read More

Convolutional Neural Networks spread through computer vision like a wildfire, impacting almost all visual tasks imaginable. Despite this, few researchers dare to train their models from scratch. Most work builds on one of a handful of ImageNet pre-trained models, and fine-tunes or adapts these for specific tasks. Read More

This work explores the use of spatial context as a source of free and plentiful supervisory signal for training a rich visual representation. Given only a large, unlabeled image collection, we extract random pairs of patches from each image and train a convolutional neural net to predict the position of the second patch relative to the first. We argue that doing well on this task requires the model to learn to recognize objects and their parts. Read More

Building on the success of recent discriminative mid-level elements, we propose a surprisingly simple approach for object detection which performs comparable to the current state-of-the-art approaches on PASCAL VOC comp-3 detection challenge (no external data). Through extensive experiments and ablation analysis, we show how our approach effectively improves upon the HOG-based pipelines by adding an intermediate mid-level representation for the task of object detection. This representation is easily interpretable and allows us to visualize what our object detector "sees". Read More