# Calvin Newport

## Contact Details

NameCalvin Newport |
||

Affiliation |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesComputer Science - Distributed; Parallel; and Cluster Computing (8) Computer Science - Data Structures and Algorithms (4) Mathematics - Combinatorics (1) |

## Publications Authored By Calvin Newport

In this paper, we study PUSH-PULL style rumor spreading algorithms in the mobile telephone model, a variant of the classical telephone model in which each node can participate in at most one connection per round; i.e., you can no longer have multiple nodes pull information from the same source in a single round. Read More

In this paper, we study the quantity of computational resources (state machine states and/or probabilistic transition precision) needed to solve specific problems in a single hop network where nodes communicate using only beeps. We begin by focusing on randomized leader election. We prove a lower bound on the states required to solve this problem with a given error bound, probability precision, and (when relevant) network size lower bound. Read More

We generalize the technique of smoothed analysis to distributed algorithms in dynamic network models. Whereas standard smoothed analysis studies the impact of small random perturbations of input values on algorithm performance metrics, dynamic graph smoothed analysis studies the impact of random perturbations of the underlying changing network graph topologies. Similar to the original application of smoothed analysis, our goal is to study whether known strong lower bounds in dynamic network models are robust or fragile: do they withstand small (random) perturbations, or do such deviations push the graphs far enough from a precise pathological instance to enable much better performance? Fragile lower bounds are likely not relevant for real-world deployment, while robust lower bounds represent a true difficulty caused by dynamic behavior. Read More

In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e. Read More

Theoreticians have studied distributed algorithms in the radio network model for close to three decades. A significant fraction of this work focuses on lower bounds for basic communication problems such as wake-up (symmetry breaking among an unknown set of nodes) and broadcast (message dissemination through an unknown network topology). In this paper, we introduce a new technique for proving this type of bound, based on reduction from a probabilistic hitting game, that simplifies and strengthens much of this existing work. Read More

We study the multi-message broadcast problem using abstract MAC layer models of wireless networks. These models capture the key guarantees of existing MAC layers while abstracting away low-level details such as signal propagation and contention. We begin by studying upper and lower bounds for this problem in a {\em standard abstract MAC layer model}---identifying an interesting dependence between the structure of unreliable links and achievable time complexity. Read More

We consider the ANTS problem [Feinerman et al.] in which a group of agents collaboratively search for a target in a two-dimensional plane. Because this problem is inspired by the behavior of biological species, we argue that in addition to studying the {\em time complexity} of solutions it is also important to study the {\em selection complexity}, a measure of how likely a given algorithmic strategy is to arise in nature due to selective pressures. Read More

In this paper, we study distributed consensus in the radio network setting. We produce new upper and lower bounds for this problem in an abstract MAC layer model that captures the key guarantees provided by most wireless MAC layers. In more detail, we first generalize the well-known impossibility of deterministic consensus with a single crash failure [FLP 1895] from the asynchronous message passing model to our wireless setting. Read More

The local broadcast problem assumes that processes in a wireless network are provided messages, one by one, that must be delivered to their neighbors. In this paper, we prove tight bounds for this problem in two well-studied wireless network models: the classical model, in which links are reliable and collisions consistent, and the more recent dual graph model, which introduces unreliable edges. Our results prove that the Decay strategy, commonly used for local broadcast in the classical setting, is optimal. Read More