# C. Weydert

## Contact Details

NameC. Weydert |
||

Affiliation |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (6) High Energy Physics - Experiment (3) Nuclear Theory (1) Quantum Physics (1) Physics - Mesoscopic Systems and Quantum Hall Effect (1) Astrophysics (1) High Energy Physics - Theory (1) General Relativity and Quantum Cosmology (1) |

## Publications Authored By C. Weydert

The associated production of charged Higgs bosons and top quarks at hadron colliders is an important discovery channel to establish the existence of a non-minimal Higgs sector. Here, we present details of a next-to-leading order (NLO) calculation of this process using the Catani-Seymour dipole formalism and describe its implementation in POWHEG, which allows to match NLO calculations to parton showers. Numerical predictions are presented using the PYTHIA parton shower and are compared to those obtained previously at fixed order, to a leading order calculation matched to the PYTHIA parton shower, and to a different NLO calculation matched to the HERWIG parton shower with MC@NLO. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. Baglio, P. Bolzoni, R. Boughezal, O. Brein, C. Collins-Tooth, S. Dawson, S. Dean, A. Denner, S. Farrington, M. Felcini, M. Flechl, D. de Florian, S. Forte, M. Grazzini, C. Hackstein, T. Hahn, R. Harlander, T. Hartonen, S. Heinemeyer, J. Huston, A. Kalinowski, M. Krämer, F. Krauss, J. S. Lee, S. Lehti, F. Maltoni, K. Mazumdar, S. -O. Moch, A. Mück, M. Mühlleitner, P. Nason, C. Neu, C. Oleari, J. Olsen, S. Palmer, F. Petriello, G. Piacquadio, A. Pilaftsis, C. T. Potter, I. Puljak, J. Qian, D. Rebuzzi, L. Reina, H. Rzehak, M. Schumacher, P. Slavich, M. Spira, F. Stöckli, R. S. Thorne, M. Vazquez Acosta, T. Vickey, A. Vicini, D. Wackeroth, M. Warsinsky, M. Weber, G. Weiglein, C. Weydert, J. Yu, M. Zaro, T. Zirke

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the first 10 months' activities of the LHC Higgs Cross Sections Working Group. The main goal of the working group was to present the status-of-art on Higgs Physics at the LHC integrating all new results that have appeared in the last few years. The Report is more than a mere collection of the proceedings of the general meetings. Read More

The production in association with a top quark is the most promising search channel for charged Higgs bosons at the LHC. We review its theoretical description including next-to-leading order corrections and the combination with a parton shower. The latter allows us to for the first time answer questions about the kinematics of all jets in the process. Read More

Accurate predictions for both signal and background events at the LHC are of paramount importance in order to confirm even the smallest deviations from Standard Model predictions. Next-to-leading order Monte Carlo event generators are an essential tool to reach that goal. Concerning the charged Higgs boson, NLO calculations of the production cross section already exist. Read More

We discuss the calculation of charged Higgs boson production in association with top quark in the MC@NLO framework for combining NLO matrix elements with a parton shower. The process is defined in a model independent manner for wide applicability, and can be used if the charged Higgs boson mass is either greater or less than the mass of the top quark. For the latter mass region, care is needed in defining the charged Higgs production mode due to interference with top pair production. Read More

The concept of black hole entropy is one of the most important enigmas of theoretical physics. It relates thermodynamics to gravity and allows substantial hints toward a quantum theory of gravitation. Although Bekenstein conjecture -assuming the black hole entropy to be a measure of the number of precollapse configurations- has proved to be extremely fruitful, a direct and conclusive proof is still missing. Read More

A presentation and a generalisation are given of the phenomenon of level rearrangement, which occurs when an attractive long-range potential is supplemented by a short-range attractive potential of increasing strength. This problem has been discovered in condensate-matter physics and has also been studied in the physics of exotic atoms. A similar phenomenon occurs in a situation inspired by quantum dots, where a short-range interaction is added to an harmonic confinement. Read More