C. Un

C. Un
Are you C. Un?

Claim your profile, edit publications, add additional information:

Contact Details

C. Un

Pubs By Year

Pub Categories

High Energy Physics - Phenomenology (29)
High Energy Physics - Theory (1)
High Energy Physics - Experiment (1)
General Relativity and Quantum Cosmology (1)

Publications Authored By C. Un

We explore the low scale implications of the Pati-Salam Model including the TeV scale right-handed neutrinos interacting and mixing with the MSSM fields through the inverse seesaw (IS) mechanism in the light of the muon anomalous magnetic moment (muon g-2) resolution, and highlight the solutions which are compatible with the Quasi-Yukawa Unification condition (QYU). We find that the presence of the right-handed neutrinos causes heavy smuons >~ 800 GeV in order to avoid tachyonic staus at the low scale. On the other hand, the sneutrinos can be as light as about 100 GeV along with the light charginos of mass <~ 400 GeV, they can yield so large contributions to muon g-2 that the discrepancy between the experiment and the theory can be resolved. Read More

A wide variety of unified models predict asymptotic relations at $M_{GUT}$ between the b quark and $\tau$ lepton Yukawa couplings. Within the framework of supersymmetric SU(4) $\times$ SU(2)$_L \times$ SU(2)$_R$, we explore regions of the parameter space that are compatible with b-$\tau$ quasi-Yukawa unification and the higgsinos being the lightest supersymmetric particles ($\lesssim$ 1 TeV). Among the colored sparticles, the stop weighs more than 1. Read More

We review the THDM model in which one of the Higgs doublets does not develop a vacuum expectation value. In this case, the Higgs fields with zero VEV does not contribute to the physical masses of the SM particles, and hence, its interactions with the SM particles can have more freedom than in the case of usual considerations on the THDM models. We show that the stability of the Higgs potential minima can be maintained. Read More

We study the naturalness properties of the $B-L$ Supersymmetric Standard Model (BLSSM) and compare them to those of the Minimal Supersymmetric Standard Model (MSSM) at both low (i.e., Large Hadron Collider) energies and high (i. Read More

We explored the sparticle mass spectrum in light of the muon g-2 anomaly and the little hierarchy problem in a class of gauge mediated supersymmetry breaking model. Here the messenger fields transform in the adjoint representation of the Standard Model gauge symmetry. To avoid unacceptably light right-handed slepton masses the standard model is supplemented by additional U(1)_B-L gauge symmetry. Read More

We discuss the fine-tuning issue within the MSSM framework. Following the idea that the fine-tuning can measure effects of some missing mechanisms we impose non-universal gaugino masses at the GUT scale, and explore the low scale implications. We consider the stop mass with a special importance and consider the mass scales which are excluded by the LHC experiments. Read More

We present a class of models in the framework of gauge mediation supersymmetry breaking where the messenger fields transform in the adjoint representation of the Standard Model gauge symmetry. To avoid unacceptably light right-handed sleptons in the spectrum we introduce a non-zero U(1)_B-L D-term. This leads to an additional contribution to the soft supersymmetry breaking mass terms which makes the right-handed slepton masses compatible with the current experimental bounds. Read More

In this paper, we examine the consistency of the Large Hadron Collider (LHC) data collected during Run 1 and 2 by the ATLAS and CMS experiments with the predictions of a 2-Higgs Doublet Model (2HDM) embedding Vector-Like Quarks (VLQs) for the $pp \to H,A$ and production and decay mechanisms, respectively, of (nearly) degenerate CP-even ($H$) and CP-odd ($A$) Higgs bosons. We show that a scenario containing one single VLQ with Electro-Magnetic (EM) charge $2/3$ can explain the ATLAS and CMS data for masses in the region 375 GeV $\leq m_{\rm VLQ}\leq 1.5$ TeV or so, depending on $\tan\beta$, and for several values of the mixing angle between the top quark ($t$) and its VLQ counterpart ($T$). Read More

We analyze the Lepton Flavor Violating (LFV) Higgs decay h -> tau mu in three supersymmetric models: Minimal Supersymmetric Standard Model (MSSM), Supersymmetric Seesaw Model (SSM), and Supersymmetric B-L model with Inverse Seesaw (BLSSM-IS). We show that in generic MSSM, with non-universal slepton masses and/or trilinear couplings, it is not possible to enhance BR(h -> tau mu) without violating the experimental bound on the BR(tau -> mu gamma). In SSM, where flavor mixing is radiatively generated, the LFV process mu -> e gamma strictly constrains the parameter space and the maximum value of BR(h -> tau mu) is of order 10^-10, which is extremely smaller than the recent results reported by the CMS and ATLAS experiments. Read More

We consider the low scale implications in the U(1)' extended MSSM (UMSSM). We restrict the parameter space such that the lightest supersymmetric particle (LSP) is always the lightest neutralino. In addition, we impose quasi Yukawa unification (QYU) at the grand unification scale (M_GUT). Read More

We investigate the predictions on the mass spectrum and Higgs boson decays in the supersymmetric standard model extended by U(1)_B-L symmetry (BLSSM). The model requires two singlet Higgs fields, which are responsible for the radiative breaking of U(1)_B-L symmetry. It predicts degenerate right-handed neutrino masses (1. Read More

We present a class of models in the framework of gauge mediation supersymmetry breaking where the standard model is supplemented by additional U(1) symmetry which acts only on the third generation fermions. The messenger fields carry non-trivial U(1) charge and are vector-like particles under this symmetry. This leads to additional contribution to the soft supersymmetry breaking mass terms for the third generation squarks and sleptons. Read More

Motivated by the tension between the Higgs mass and muon g-2 in minimal supersymmetric standard model (MSSM), we analyze the muon g-2 in supersymmertic B-L extension of the standard model (BLSSM) with inverse seesaw mechanism. In this model, the Higgs mass receives extra important radiative corrections proportional to large neutrino Yukawa coupling. We point out that muon g-2 also gets significant contribution, due to the constructive interferences of light neutralino effects. Read More

We explore the dark matter and LHC implications of t-b-tau quasi Yukawa unification in the framework of supersymmetric models based on the gauge symmetry G=SU(4)_{c}\times SU(2)_{L}\times SU(2)_{R}. The deviation from exact Yukawa unification is quantified by a dimensionless parameter C (|C| <~ 0.2), such that the Yukawa couplings at M_GUT are related by y_t:y_b:y_tau=|1+C| : |1-C| : |1+3C|. Read More

We explore the implications of t-b-tau (and b-tau) Yukawa coupling unification condition on the fundamental parameter space and sparticle spectroscopy in the minimal gauge mediated supersymmetry breaking (mGMSB) model. We find that this scenario prefers values of the CP-odd Higgs mass m_A > 1 TeV, with all colored sparticle masses above 3 TeV. These predictions will be hard to test at LHC13 but they may be testable at HE-LHC 33 TeV or a 100 TeV collider. Read More

We present a study of b-tau Yukawa unified supersymmetric SU(4)_c x SU(2)_L x SU(2)_R model (with mu > 0), which predicts the existence of gluino - neutralino and stop - neutralino coannihilation scenarios compatible with the desired relic LSP neutralino dark matter abundance and other collider constraints. The NLSP gluino or NLSP stop masses vary between 400 GeV to ~ 1 TeV. The NLSP gluinos will be accessible at the 14 TeV LHC, while we hope that the NSLP stop solutions will be probed in future LHC searches. Read More

In this work we study implications of additional non-holomorphic soft breaking terms (mu', A'_t, A'_b and A'_tau) on the MSSM phenomenology. By respecting the existing bounds on the mass measurements and restrictions coming from certain B-decays, we probe reactions of the MSSM to these additional soft breaking terms. We provide examples in which some slightly excluded solutions of the MSSM can be made to be consistent with the current experimental results. Read More

We analyze minimal supersymmetric models in order to determine in what parameter regions with what amount of fine-tuning they are capable of accomodating the LHC-allowed top-stop degeneracy window. The stops must be light enough to enable Higgs naturalness yet heavy enough to induce a 125 GeV Higgs boson mass. These two constraints imply a large mass splitting. Read More

We discuss the sparticle (and Higgs) spectrum in a class of flavor symmetry-based minimal supersymmetric standard models, referred to here as sMSSM. In this framework the SUSY breaking Lagrangian takes the most general form consistent with a grand unified symmetry such as SO(10) and a non-Abelian flavor symmetry acting on the three families with either a 2+1 or a 3 family assignment. Models based on gauged SU(2) and SO(3) flavor symmetry, as well as non-Abelian discrete symmetries such as S_3 and A_4, have been suggested which fall into this category. Read More

We consider two classes of supersymmetric models with nonuniversal gaugino masses at M_GUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses have the same sign at M_GUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at M_GUT. Read More

We consider two distinct classes of Yukawa unified supersymmetric SO(10) models with non-universal and universal soft supersymmetry breaking (SSB) gaugino masses at M_{\rm GUT}. In both cases, we assume that the third family SSB sfermion masses at M_{\rm GUT} are different from the corresponding sfermion masses of the first two families (which are equal). For the SO(10) model with essentially arbitrary (non-universal) gaugino masses at M_{\rm GUT}, it is shown that t-b-\tau Yukawa coupling unification is compatible, among other things, with the 125 GeV Higgs boson mass, the WMAP relic dark matter density, and with the resolution of the apparent muon g-2 anomaly. Read More


This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

We discuss ways to probe t-b-tau Yukawa coupling unification condition at the Energy and Intensity frontiers. We consider non-universal soft supersymmetry breaking mass terms for gauginos related by the SO(10) grand unified theory (GUT). We have previously shown that t-b-tau Yukawa coupling unification prefers a mass of around 125 GeV for the Standard Model-like Higgs boson with all colored sparticle masses above 3 TeV. Read More

We revisit a class of supersymmetric SO(10) models with t-b-tau Yukawa coupling unification condition, with emphasis on the prediction of the Higgs mass. We discuss qualitative features in this model that lead to a Higgs mass prediction close to 125 GeV. We show this with two distinct computing packages, Isajet and SuSpect, and also show that they yield similar global features in the parameter space of this model. Read More

We identify a class of supersymmetric SU(4)_c x SU(2)_L x SU(2)_R models in which imposing essentially perfect t-b-tau Yukawa coupling unification at M_GUT yields a mass close to 122-126 GeV for the lightest CP-even (SM-like) Higgs boson. The squark and gluino masses in these models exceed 3 TeV, but the stau and charginos in some cases can be considerably lighter. We display some benchmark points corresponding to neutralino-stau and bino-wino coannihilations as well as A-resonance. Read More

We employ the Yukawa coupling unification condition, y_t= y_b= y_tau at M_GUT, inspired by supersymmetric SO(10) models, to estimate the lightest Higgs boson mass as well as masses of the associated squarks and gluino. We employ non-universal soft masses, dictated by SO(10) symmetry, for the gauginos. Furthermore, the soft masses for the two scalar Higgs doublets are set equal at M_GUT, and in some examples these are equal to the soft masses for scalars in the matter multiplets. Read More

We consider the low energy implications including particle spectroscopy of SO(10) inspired t-b-tau Yukawa coupling unification with mu < 0, where mu is the coefficient of the bilinear Higgs mixing term of the minimal supersymmetric standard model (MSSM). We imploy non-universal MSSM gaugino masses induced by SO(10) invariant dimension five operators, such that the total number of fundamental parameters is precisely the same as in Yukawa unified supersymmetric SO(10) models with universal gaugino masses and mu > 0. We find that t-b-tau Yukawa unification with mu < 0 is compatible with the current experimental bounds, including the WMAP bound on neutralino dark matter and the measured value of the muon anomalous magnetic moment. Read More

We consider two classes of t-b-tau quasi-Yukawa unification scenarios which can arise from realistic supersymmetric SO(10) and SU(4)_C X SU(2)_L X SU(2)_R models. We show that these scenarios can be successfully implemented in the CMSSM and NUHM1 frameworks, and yields a variety of sparticle spectra with WMAP compatible neutralino dark matter. In NUHM1 we find bino-higgsino dark matter as well as the stau coannihilation and A-funnel solutions. Read More

In this study we reconsider the phenomenological problems related to tachyonic modes in the context of extra time-like dimensions. First we reconsider a lower bound on the size of extra time-like dimensions. Next we discuss the issues of spontaneous decay of stable fermions through tachyonic decays and disappearance of fermions due to tachyonic contributions to their self-energies. Read More