C. Rudolf Rohr - Experimental Solid State Physics, Imperial College London UK

C. Rudolf Rohr
Are you C. Rudolf Rohr?

Claim your profile, edit publications, add additional information:

Contact Details

Name
C. Rudolf Rohr
Affiliation
Experimental Solid State Physics, Imperial College London UK
City
London
Country
United Kingdom

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Experiment (19)
 
Physics - Instrumentation and Detectors (17)
 
High Energy Physics - Phenomenology (7)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (4)
 
Computer Science - Software Engineering (2)
 
Physics - Soft Condensed Matter (1)
 
Physics - Optics (1)
 
Quantitative Biology - Molecular Networks (1)

Publications Authored By C. Rudolf Rohr

2017May
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, B. Bullard, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, G. De Geronimo, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, A. A. Fadeeva, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, A. Hourlier, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, S. Li, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, S. Rescia, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, C. Thorn, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, W. Van De Pontseele, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Read More

2017Apr
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. A. Sutton, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~50 MeV). Read More

2017Mar
Authors: MicroBooNE collaboration, P. Abratenko, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Read More

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction. Read More

2016Nov
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadón, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Söldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, G. P. Zeller, J. Zennamo, C. Zhang

We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Read More

The fundamental efficiency limit of a single bandgap solar cell is about 31% at one sun with a bandgap of about Eg = 1.35 eV (1), determined by the trade-off of maximising current with a smaller bandgap and voltage with a larger bandgap. Multiple bandgaps can be introduced to absorb the broad solar spectrum more efficiently. Read More

We describe a novel high-speed front-end electronic board (FEB) for interfacing an array of 32 Silicon Photo-multipliers (SiPM) with a computer. The FEB provides individually adjustable bias on the SiPMs, and performs low-noise analog signal amplification, conditioning and digitization. It provides event timing information accurate to 1. Read More

We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10. Read More

2015Mar
Authors: R. Acciarri1, C. Adams2, R. An3, C. Andreopoulos4, A. M. Ankowski5, M. Antonello6, J. Asaadi7, W. Badgett8, L. Bagby9, B. Baibussinov10, B. Baller11, G. Barr12, N. Barros13, M. Bass14, V. Bellini15, P. Benetti16, S. Bertolucci17, K. Biery18, H. Bilokon19, M. Bishai20, A. Bitadze21, A. Blake22, F. Boffelli23, T. Bolton24, M. Bonesini25, J. Bremer26, S. J. Brice27, C. Bromberg28, L. Bugel29, E. Calligarich30, L. Camilleri31, D. Caratelli32, B. Carls33, F. Cavanna34, S. Centro35, H. Chen36, C. Chi37, E. Church38, D. Cianci39, A. G. Cocco40, G. H. Collin41, J. M. Conrad42, M. Convery43, G. De Geronimo44, A. Dermenev45, R. Dharmapalan46, S. Dixon47, Z. Djurcic48, S. Dytmam49, B. Eberly50, A. Ereditato51, J. Esquivel52, J. Evans53, A. Falcone54, C. Farnese55, A. Fava56, A. Ferrari57, B. T. Fleming58, W. M. Foreman59, J. Freestone60, T. Gamble61, G. Garvey62, V. Genty63, M. Geynisman64, D. Gibin65, S. Gninenko66, D. Göldi67, S. Gollapinni68, N. Golubev69, M. Graham70, E. Gramellini71, H. Greenlee72, R. Grosso73, R. Guenette74, A. Guglielmi75, A. Hackenburg76, R. Hänni77, O. Hen78, J. Hewes79, J. Ho80, G. Horton-Smith81, J. Howell82, A. Ivashkin83, C. James84, C. M. Jen85, R. A. Johnson86, B. J. P. Jones87, J. Joshi88, H. Jostlein89, D. Kaleko90, L. N. Kalousis91, G. Karagiorgi92, W. Ketchum93, B. Kirby94, M. Kirby95, M. Kirsanov96, J. Kisiel97, J. Klein98, J. Klinger99, T. Kobilarcik100, U. Kose101, I. Kreslo102, V. A. Kudryavtsev103, Y. Li104, B. Littlejohn105, D. Lissauer106, P. Livesly107, S. Lockwitz108, W. C. Louis109, M. Lüthi110, B. Lundberg111, F. Mammoliti112, G. Mannocchi113, A. Marchionni114, C. Mariani115, J. Marshall116, K. Mavrokoridis117, N. McCauley118, N. McConkey119, K. McDonald120, V. Meddage121, A. Menegolli122, G. Meng123, I. Mercer124, T. Miao125, T. Miceli126, G. B. Mills127, D. Mladenov128, C. Montanari129, D. Montanari130, J. Moon131, M. Mooney132, C. Moore133, Z. Moss134, M. H. Moulai135, S. Mufson136, R. Murrells137, D. Naples138, M. Nessi139, M. Nicoletto140, P. Nienaber141, B. Norris142, F. Noto143, J. Nowak144, S. Pal145, O. Palamara146, V. Paolone147, V. Papavassiliou148, S. Pate149, J. Pater150, Z. Pavlovic151, J. Perkin152, P. Picchi153, F. Pietropaolo154, P. Płoński155, S. Pordes156, R. Potenza157, G. Pulliam158, X. Qian159, L. Qiuguang160, J. L. Raaf161, V. Radeka162, R. Rameika163, A. Rappoldi164, G. L. Raselli165, P. N. Ratoff166, B. Rebel167, M. Richardson168, L. Rochester169, M. Rossella170, C. Rubbia171, C. Rudolf von Rohr172, B. Russell173, P. Sala174, A. Scaramelli175, D. W. Schmitz176, A. Schukraft177, W. Seligman178, M. H. Shaevitz179, B. Sippach180, E. Snider181, J. Sobczyk182, M. Soderberg183, S. Söldner-Rembold184, M. Spanu185, J. Spitz186, N. Spooner187, D. Stefan188, J. St. John189, T. Strauss190, R. Sulej191, C. M. Sutera192, A. M. Szelc193, N. Tagg194, C. E. Taylor195, K. Terao196, M. Thiesse197, L. Thompson198, M. Thomson199, C. Thorn200, M. Torti201, F. Tortorici202, M. Toups203, C. Touramanis204, Y. Tsai205, T. Usher206, R. Van de Water207, F. Varanini208, S. Ventura209, C. Vignoli210, T. Wachala211, M. Weber212, D. Whittington213, P. Wilson214, S. Wolbers215, T. Wongjirad216, K. Woodruff217, M. Xu218, T. Yang219, B. Yu220, A. Zani221, G. P. Zeller222, J. Zennamo223, C. Zhang224
Affiliations: 1MicroBooNE Collaboration, 2LAr1-ND Collaboration, 3MicroBooNE Collaboration, 4LAr1-ND Collaboration, 5LAr1-ND Collaboration, 6ICARUS-WA104 Collaboration, 7LAr1-ND Collaboration, 8LAr1-ND Collaboration, 9LAr1-ND Collaboration, 10ICARUS-WA104 Collaboration, 11LAr1-ND Collaboration, 12MicroBooNE Collaboration, 13LAr1-ND Collaboration, 14LAr1-ND Collaboration, 15ICARUS-WA104 Collaboration, 16ICARUS-WA104 Collaboration, 17ICARUS-WA104 Collaboration, 18ICARUS-WA104 Collaboration, 19ICARUS-WA104 Collaboration, 20LAr1-ND Collaboration, 21LAr1-ND Collaboration, 22MicroBooNE Collaboration, 23ICARUS-WA104 Collaboration, 24MicroBooNE Collaboration, 25ICARUS-WA104 Collaboration, 26ICARUS-WA104 Collaboration, 27MicroBooNE Collaboration, 28MicroBooNE Collaboration, 29LAr1-ND Collaboration, 30ICARUS-WA104 Collaboration, 31LAr1-ND Collaboration, 32MicroBooNE Collaboration, 33MicroBooNE Collaboration, 34LAr1-ND Collaboration, 35ICARUS-WA104 Collaboration, 36LAr1-ND Collaboration, 37LAr1-ND Collaboration, 38LAr1-ND Collaboration, 39LAr1-ND Collaboration, 40ICARUS-WA104 Collaboration, 41LAr1-ND Collaboration, 42LAr1-ND Collaboration, 43MicroBooNE Collaboration, 44LAr1-ND Collaboration, 45ICARUS-WA104 Collaboration, 46LAr1-ND Collaboration, 47LAr1-ND Collaboration, 48LAr1-ND Collaboration, 49MicroBooNE Collaboration, 50MicroBooNE Collaboration, 51LAr1-ND Collaboration, 52LAr1-ND Collaboration, 53LAr1-ND Collaboration, 54ICARUS-WA104 Collaboration, 55ICARUS-WA104 Collaboration, 56ICARUS-WA104 Collaboration, 57ICARUS-WA104 Collaboration, 58LAr1-ND Collaboration, 59LAr1-ND Collaboration, 60LAr1-ND Collaboration, 61LAr1-ND Collaboration, 62LAr1-ND Collaboration, 63LAr1-ND Collaboration, 64ICARUS-WA104 Collaboration, 65ICARUS-WA104 Collaboration, 66ICARUS-WA104 Collaboration, 67LAr1-ND Collaboration, 68MicroBooNE Collaboration, 69ICARUS-WA104 Collaboration, 70MicroBooNE Collaboration, 71LAr1-ND Collaboration, 72LAr1-ND Collaboration, 73MicroBooNE Collaboration, 74LAr1-ND Collaboration, 75ICARUS-WA104 Collaboration, 76LAr1-ND Collaboration, 77LAr1-ND Collaboration, 78MicroBooNE Collaboration, 79MicroBooNE Collaboration, 80LAr1-ND Collaboration, 81MicroBooNE Collaboration, 82LAr1-ND Collaboration, 83ICARUS-WA104 Collaboration, 84LAr1-ND Collaboration, 85LAr1-ND Collaboration, 86MicroBooNE Collaboration, 87LAr1-ND Collaboration, 88MicroBooNE Collaboration, 89MicroBooNE Collaboration, 90MicroBooNE Collaboration, 91LAr1-ND Collaboration, 92LAr1-ND Collaboration, 93LAr1-ND Collaboration, 94MicroBooNE Collaboration, 95MicroBooNE Collaboration, 96ICARUS-WA104 Collaboration, 97ICARUS-WA104 Collaboration, 98LAr1-ND Collaboration, 99LAr1-ND Collaboration, 100MicroBooNE Collaboration, 101ICARUS-WA104 Collaboration, 102LAr1-ND Collaboration, 103LAr1-ND Collaboration, 104MicroBooNE Collaboration, 105MicroBooNE Collaboration, 106LAr1-ND Collaboration, 107LAr1-ND Collaboration, 108MicroBooNE Collaboration, 109LAr1-ND Collaboration, 110LAr1-ND Collaboration, 111MicroBooNE Collaboration, 112ICARUS-WA104 Collaboration, 113ICARUS-WA104 Collaboration, 114MicroBooNE Collaboration, 115LAr1-ND Collaboration, 116MicroBooNE Collaboration, 117LAr1-ND Collaboration, 118LAr1-ND Collaboration, 119LAr1-ND Collaboration, 120MicroBooNE Collaboration, 121MicroBooNE Collaboration, 122ICARUS-WA104 Collaboration, 123ICARUS-WA104 Collaboration, 124LAr1-ND Collaboration, 125LAr1-ND Collaboration, 126MicroBooNE Collaboration, 127LAr1-ND Collaboration, 128ICARUS-WA104 Collaboration, 129ICARUS-WA104 Collaboration, 130LAr1-ND Collaboration, 131LAr1-ND Collaboration, 132MicroBooNE Collaboration, 133LAr1-ND Collaboration, 134LAr1-ND Collaboration, 135MicroBooNE Collaboration, 136LAr1-ND Collaboration, 137MicroBooNE Collaboration, 138MicroBooNE Collaboration, 139ICARUS-WA104 Collaboration, 140ICARUS-WA104 Collaboration, 141MicroBooNE Collaboration, 142LAr1-ND Collaboration, 143ICARUS-WA104 Collaboration, 144LAr1-ND Collaboration, 145LAr1-ND Collaboration, 146LAr1-ND Collaboration, 147MicroBooNE Collaboration, 148MicroBooNE Collaboration, 149MicroBooNE Collaboration, 150LAr1-ND Collaboration, 151LAr1-ND Collaboration, 152LAr1-ND Collaboration, 153ICARUS-WA104 Collaboration, 154ICARUS-WA104 Collaboration, 155ICARUS-WA104 Collaboration, 156MicroBooNE Collaboration, 157MicroBooNE Collaboration, 158LAr1-ND Collaboration, 159LAr1-ND Collaboration, 160LAr1-ND Collaboration, 161MicroBooNE Collaboration, 162LAr1-ND Collaboration, 163LAr1-ND Collaboration, 164ICARUS-WA104 Collaboration, 165ICARUS-WA104 Collaboration, 166LAr1-ND Collaboration, 167MicroBooNE Collaboration, 168LAr1-ND Collaboration, 169MicroBooNE Collaboration, 170ICARUS-WA104 Collaboration, 171ICARUS-WA104 Collaboration, 172LAr1-ND Collaboration, 173LAr1-ND Collaboration, 174ICARUS-WA104 Collaboration, 175ICARUS-WA104 Collaboration, 176LAr1-ND Collaboration, 177MicroBooNE Collaboration, 178MicroBooNE Collaboration, 179LAr1-ND Collaboration, 180LAr1-ND Collaboration, 181ICARUS-WA104 Collaboration, 182ICARUS-WA104 Collaboration, 183LAr1-ND Collaboration, 184LAr1-ND Collaboration, 185ICARUS-WA104 Collaboration, 186LAr1-ND Collaboration, 187LAr1-ND Collaboration, 188ICARUS-WA104 Collaboration, 189MicroBooNE Collaboration, 190LAr1-ND Collaboration, 191ICARUS-WA104 Collaboration, 192ICARUS-WA104 Collaboration, 193LAr1-ND Collaboration, 194MicroBooNE Collaboration, 195LAr1-ND Collaboration, 196LAr1-ND Collaboration, 197LAr1-ND Collaboration, 198LAr1-ND Collaboration, 199LAr1-ND Collaboration, 200LAr1-ND Collaboration, 201ICARUS-WA104 Collaboration, 202ICARUS-WA104 Collaboration, 203LAr1-ND Collaboration, 204LAr1-ND Collaboration, 205MicroBooNE Collaboration, 206MicroBooNE Collaboration, 207LAr1-ND Collaboration, 208ICARUS-WA104 Collaboration, 209ICARUS-WA104 Collaboration, 210ICARUS-WA104 Collaboration, 211ICARUS-WA104 Collaboration, 212LAr1-ND Collaboration, 213LAr1-ND Collaboration, 214MicroBooNE Collaboration, 215MicroBooNE Collaboration, 216LAr1-ND Collaboration, 217MicroBooNE Collaboration, 218MicroBooNE Collaboration, 219MicroBooNE Collaboration, 220LAr1-ND Collaboration, 221ICARUS-WA104 Collaboration, 222LAr1-ND Collaboration, 223LAr1-ND Collaboration, 224MicroBooNE Collaboration

A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6. Read More

ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance including a comparison of the new cryogenic charge-sensitive preamplifiers with the previously used room-temperature-operated charge preamplifiers. Read More

ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift field generated in-situ by a Greinacher voltage multiplier circuit. We present results on the measurement of the drift-field distribution inside ARGONTUBE using straight ionization tracks generated by an intense UV laser beam. Our analysis is based on a simplified model of the charging of a multi-stage Greinacher circuit to describe the voltages on the field cage rings. Read More

A number of liquid argon time projection chambers (LAr TPC's) are being build or are proposed for neutrino experiments on long- and short baseline beams. For these detectors a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity this distortion could be of the same magnitude as the drift field itself. Read More

We present a method to reach electric field intensity as high as 400 kV/cm in liquid argon for cathode-ground distances of several millimeters. This can be achieved by suppressing field emission from the cathode, overcoming limitations that we reported earlier. Read More

In this paper we present results on measurements of the dielectric strength of liquid argon near its boiling point and cathode-anode distances in the range of 0.1 mm to 40 mm with spherical cathode and plane anode. We show that at such distances the applied electric field at which breakdowns occur is as low as 40 kV/cm. Read More

A new release of the Monte Carlo event generator Herwig++ (version 2.7) is now available. This version comes with a number of improvements including: an interface to the Universal FeynRules Output (UFO) format allowing the simulation of a wide range of new-physics models; developments of the Matchbox framework for next-to-leading order (NLO) simulations; better treatment of QCD radiation in heavy particle decays in new-physics models; a new tune of underlying event and colour connection parameters that allows a good simultaneous description of both Tevatron and LHC underlying event data and the effective cross-section parameter for double-parton scattering. Read More

We report on the design, construction, and operation of a PID temperature controlled and vacuum tight camera casing. The camera casing contains a commercial digital camera and a lighting system. The design of the camera casing and its components are discussed in detail. Read More

This white paper describes LAr1-ND and the compelling physics it brings first in Phase 1 and next towards the full LAr1 program. In addition, LAr1-ND serves as a key step in the development toward large-scale LArTPC detectors. Its development goals will encompass testing existing and possibly innovative designs for LBNE while at the same time providing a training ground for teams working towards LBNE combining timely neutrino physics with experience in detector development. Read More

This document presents the results of the Model Checking Contest held at Petri Nets 2013 in Milano. This contest aimed at a fair and experimental evaluation of the performances of model checking techniques applied to Petri nets. This is the third edition after two successful editions in 2011 and 2012. Read More

The Liquid Argon Time Projection Chamber (LArTPC) is a prime type of detector for future large-mass neutrino observatories and proton decay searches. In this paper we present the design and operation, as well as experimental results from ARGONTUBE, a LArTPC being operated at the AEC-LHEP, University of Bern. The main goal of this detector is to prove the feasibility of charge drift over very long distances in liquid argon. Read More

2013Feb
Affiliations: 1Karlsruhe U., ITP, 2Karlsruhe U., ITP, 3University of Manchester

We review the implementation of a model for multiple partonic interactions in Herwig++. Moreover, we show how recent studies on the colour structure of events in Herwig++ led to a significant improvement in the description of soft inclusive observables in pp interactions at the LHC. Read More

This article presents the results of the Model Checking Contest held at Petri Nets 2012 in Hambourg. This contest aimed at a fair and experimental evaluation of the performances of model checking techniques applied to Petri nets. This is the second edition after a successful one in 2011. Read More

We review the modelling of multiple interactions in the event generator Herwig++ and study implications of recent tuning efforts to LHC data. A crucial ingredient to a successful description of minimum-bias and underlying-event observables is a model for colour reconnection. Improvements to this model, inspired by statistical physics, are presented. Read More

We describe a molecule-oriented modelling approach based on a collection of Petri net models organized in the form of modules into a prototype database accessible through a web interface. The JAK/STAT signalling pathway with the extensive cross-talk of its components is selected as case study. Each Petri net module represents the reactions of an individual protein with its specific interaction partners. Read More

We describe the implementation details of the colour reconnection model in the event generator Herwig++. We study the impact on final-state observables in detail and confirm the model idea from colour preconfinement on the basis of studies within the cluster hadronization model. Moreover, we show that the description of minimum bias and underlying event data at the LHC is improved with this model and present results of a tune to available data. Read More

A new release of the Monte Carlo event generator Herwig++ (version 2.6) is now available. This version comes with a number of improvements including: a new structure for the implementation of next-to-leading order matrix elements; an improved treatment of wide-angle gluon radiation; new hard-coded next-to-leading order matrix elements for deep inelastic scattering and weak vector boson fusion; additional models of physics beyond the Standard Model, including the production of colour sextet particles; a statistical colour reconnection model; automated energy scaling of underlying-event tunes. Read More

We briefly review the status of the multiple partonic interaction model in the Herwig++ event generator. First, we show how a change in the colour structure of an event in Herwig++ results in a significant improvement in the description of soft inclusive observables in $pp$ interactions at $\sqrt{s}=900$ GeV. Then we present a comparison of some model results to ATLAS Underlying Event data at $\sqrt{s}=7$ TeV. Read More

Molecular building blocks interacting at the nanoscale organize spontaneously into stable mono- layers that display intriguing long-range ordering motifs on the surface of atomic substrates. The patterning process, if appropriately controlled, represents a viable route to manufacture practical nanodevices. With this goal in mind, we seek to capture the salient features of the self-assembly process by means of an interaction-site model. Read More

Self-organized monolayers of highly flexible \Frechet dendrons were deposited on graphite surfaces by solution casting. Scanning tunneling microscopy (STM) reveals an unprecedented variety of patterns with up to seven stable hierarchical ordering motifs serving as a versatile model system. The essential molecular properties determined by molecular mechanics simulations are condensed to a coarse grained interaction site model of various chain configurations. Read More

A new release of the Monte Carlo program Herwig++ (version 2.5) is now available. This version comes with a number of improvements including: new next-to-leading order matrix elements, including weak boson pair production; a colour reconnection model; diffractive processes; additional models of physics beyond the Standard Model and new leading-order matrix elements for hadron--hadron and lepton--lepton collisions as well as photon-initiated processes. Read More

2010Jun
Affiliations: 1Experimental Solid State Physics, Imperial College London UK, 2Experimental Solid State Physics, Imperial College London UK, 3Experimental Solid State Physics, Imperial College London UK, 4Experimental Solid State Physics, Imperial College London UK, 5Experimental Solid State Physics, Imperial College London UK, 6EPSRC III-V Facility, University of Sheffield, UK, 7EPSRC III-V Facility, University of Sheffield, UK, 8EPSRC III-V Facility, University of Sheffield, UK

The spectral response of quantum well solar cells (QWSCs) is well understood. We describe work on QWSC dark current theory which combined with SR theory yields a system efficiency. A methodology published for single quantum well (SQW) systems is extended to MQW systems in the Al(x) Ga(1-x) As and InGa(0. Read More