C. Lu - Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany

C. Lu
Are you C. Lu?

Claim your profile, edit publications, add additional information:

Contact Details

Name
C. Lu
Affiliation
Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany
City
Heidelberg
Country
Germany

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (12)
 
High Energy Physics - Experiment (8)
 
Quantum Physics (6)
 
Computer Science - Computer Vision and Pattern Recognition (6)
 
Nuclear Experiment (5)
 
Physics - Instrumentation and Detectors (5)
 
Physics - Materials Science (4)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (4)
 
Physics - Strongly Correlated Electrons (4)
 
Computer Science - Information Theory (3)
 
Mathematics - Information Theory (3)
 
Mathematics - Complex Variables (3)
 
Computer Science - Learning (3)
 
Mathematics - Analysis of PDEs (3)
 
Computer Science - Artificial Intelligence (2)
 
Mathematics - Differential Geometry (2)
 
Mathematics - Probability (1)
 
Mathematics - Logic (1)
 
Mathematics - Statistics (1)
 
High Energy Astrophysical Phenomena (1)
 
Statistics - Theory (1)
 
Physics - Optics (1)
 
Physics - Computational Physics (1)
 
Computer Science - Cryptography and Security (1)
 
Computer Science - Information Retrieval (1)
 
Computer Science - Human-Computer Interaction (1)
 
Mathematics - Optimization and Control (1)
 
High Energy Physics - Lattice (1)
 
Mathematics - Combinatorics (1)
 
Solar and Stellar Astrophysics (1)

Publications Authored By C. Lu

We calculate the $D^0$-$\overline{D}^0$ mixing parameter $y$ in the factorization-assisted topological-amplitude (FAT) approach, considering contributions from $D^{0}\to PP$, $PV$, and $VV$ modes, where $P$ ($V$) stands for a pseudoscalar (vector) meson. The $D^{0}\to PP$ and $PV$ decay amplitudes are extracted in the FAT approach, and the $D^{0}\to VV$ ones with final states in the longitudinal polarization are estimated via the parameter set for $D^{0}\to PV$. It is found that the $VV$ contribution to $y$, being of order of $10^{-4}$, is negligible, and that the $PP$ and$PV$ contributions amount only up to $y_{PP+PV}=(0. Read More

We establish the monotonicity property for the mass of non-pluripolar products on compact K\"ahler manifolds in the spirit of recent results due to Witt Nystr\"om. Building on this, we initiate the variational study of complex Monge-Amp\`ere equations with prescribed singularity. As applications, we prove existence and uniqueness of K\"ahler--Einstein metrics with prescribed singularity, and we also provide the log concavity property of non-pluripolar products with small unbounded locus. Read More

Based on Alan Turing's proposition on AI and computing machinery, which shaped Computing as we know it today, the new AI computing machinery should comprise a universal computer and a universal learning machine. The later should understand linear algebra natively to overcome the slowdown of Moore's law. In such a universal learnig machine, a computing unit does not need to keep the legacy of a universal computing core. Read More

Wireless sensor-actuator networks (WSANs) are gaining momentum in industrial process automation as a communication infrastructure for lowering deployment and maintenance costs. In traditional wireless control systems the plant controller and the network manager operate in isolation, which ignore the significant influence of network reliability on plant control performance. To enhance the dependability of industrial wireless control, we propose a holistic cyber-physical management framework that employs run-time coordination between the plant control and network management. Read More

Pyrochlore iridates A2Ir2O7 (A = rare earth elements, Y or Bi) hold great promise for realizing novel electronic and magnetic states owing to the interplay of spin-orbit coupling, electron correlation and geometrical frustration. A prominent example is the formation of all-in/all-out (AIAO)antiferromagnetic order in the Ir^4+ sublattice that comprises of corner-sharing tetrahedra. Here we report on an unusual magnetic phenomenon, namely a cooling-field induced vertical shift of magnetic hysteresis loop, and its possible origin in pyrochlore iridates with non-magnetic Ir defects (e. Read More

Tungstates $A$WO$_4$ with the wolframite structure characterized by the $A$O$_6$ octahedral zigzag chains along the $c$-axis, can be magnetic if $A$=Mn, Fe, Co, Cu, Ni. Among them, MnWO$_4$ is a unique member with a cycloid Mn$^{2+}$ spin order developed at low temperature, leading to an interesting type-II multiferroic behavior. However, so far no other multiferroic material in the tungstate family has been found. Read More

The inherent noise in the observed (e.g., scanned) binary document image degrades the image quality and harms the compression ratio through breaking the pattern repentance and adding entropy to the document images. Read More

Reinforcement learning is considered as a promising direction for driving policy learning. However, training autonomous driving vehicle with reinforcement learning in real environment involves non-affordable trial-and-error. It is more desirable to first train in a virtual environment and then transfer to the real environment. Read More

Real-world relations among entities can often be observed and determined by different perspectives/views. For example, the decision made by a user on whether to adopt an item relies on multiple aspects such as the contextual information of the decision, the item's attributes, the user's profile and the reviews given by other users. Different views may exhibit multi-way interactions among entities and provide complementary information. Read More

Motivated by a local $3.2-3.4$ sigma resonance in $WH$ and $ZH$ in the ATLAS Run 2 data, we attempt to interpret the excess in terms of a $W'$ boson in a $SU(2)_1 \times SU(2)_2 \times U(1)_X$ model. Read More

Recently, hashing methods have been widely used in large-scale image retrieval. However, most existing hashing methods did not consider the hierarchical relation of labels, which means that they ignored the rich information stored in the hierarchy. Moreover, most of previous works treat each bit in a hash code equally, which does not meet the scenario of hierarchical labeled data. Read More

2017Apr
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. B. Hsiung, B. Z. Hu, T. Hu, E. C. Huang, H. X. Huang, X. T. Huang, Y. B. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, K. L. Jen, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, A. Khan, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. M. Qiu, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, P. Stoler, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, Y. Z. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, C. C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, R. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2. Read More

Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is unambiguously probed, with a fidelity of $0.668 \pm 0. Read More

The existence of doubly heavy baryons have not been well established in experiments so far. Searching for them is one of the important purposes at the Large Hadron Collider (LHC) where plenty of heavy quarks have been generated. In this Letter we study the weak decays of doubly charmed baryons, $\Xi_{cc}^{++}$ and $\Xi_{cc}^{+}$, using the light-front quark model to calculate the transition form factors and firstly considering the rescattering mechanism for the long-distance contributions to predict the corresponding branching fractions. Read More

In this work, a serial on-line cluster reconstruction technique based on FPGA technology was developed to compress experiment data and reduce the dead time of data transmission and storage. At the same time, X-ray imaging experiment based on a two-dimensional positive sensitive triple GEM detector with an effective readout area of 10 cm*10 cm was done to demonstrate this technique with FPGA development board. The result showed that the reconstruction technology was practicality and efficient. Read More

Superconducting quantum circuits are promising candidate for building scalable quantum computers. Here, we use a four-qubit superconducting quantum processor to solve a two-dimensional system of linear equations based on a quantum algorithm proposed by Harrow, Hassidim, and Lloyd [Phys. Rev. Read More

We compare various notions of weak subsolutions to degenerate complex Monge-Amp\`ere equations, showing that they all coincide. This allows us to give an alternative proof of mixed Monge-Amp\`ere inequalities due to Kolodziej and Dinew. Read More

We make a systematic study of (quasi-)plurisubharmonic envelopes on compact K\"ahler manifolds, as well as on domains of $\mathbb{C}^n$, by using and extending an approximation process due to Berman [Ber13]. We show that the quasi-psh envelope of a viscosity super-solution is a pluripotential super-solution of a given complex Monge-Amp\`ere equation. We use these ideas to solve complex Monge-Amp\`ere equations by taking lower envelopes of super-solutions. Read More

Materials with formula of A2B2O7 is a famous family with more than 300 compounds, and have abundant properties, like ferroelectric, multiferroic, and photocatalyst properties, etc. Generally, two structures dominate this family, which are pyrochlore and perovskite-like layered (PL) structure. Previously, the structure and properties design of these materials are usually complex, and solid solutions, which complicates the manufacture, as well as introducing complexity in the study of the microscopic origins of the properties. Read More

Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e. Read More

The minimum volume enclosing ellipsoid (MVEE) problem is an optimization problem in the basis of many practical problems. This paper describes some new properties of this model and proposes a first-order oracle algorithm, the Adjusted Coordinate Descent (ACD) algorithm, to address the MVEE problem. The ACD algorithm is globally linear convergent and has an overwhelming advantage over the other algorithms in cases where the dimension of the data is large. Read More

Consider the single-group multicast beamforming problem, where multiple users receive the same data stream simultaneously from a single transmitter. The problem is NP-hard and all existing algorithms for the problem either find suboptimal approximate or local stationary solutions. In this paper, we propose an efficient branch-and-bound algorithm for the problem that is guaranteed to find its global solution. Read More

We compute perturbative QCD corrections to $B \to D$ form factors at leading power in $\Lambda/m_b$, at large hadronic recoil, from the light-cone sum rules (LCSR) with $B$-meson distribution amplitudes in HQET. Applying the method of regions, QCD factorization for the vacuum-to-$B$-meson correlation function with an interpolating current for the $D$-meson is demonstrated explicitly at one loop with the power counting scheme $m_c \sim {\cal O} \left ( \sqrt{\Lambda \, m_b} \right ) $. Inspecting the resummation improved sum rules for the form factors of $B \to D \ell \nu$ indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. Read More

Doubly-heavy baryons, with two heavy and one light quarks, are expected to exist in QCD and their masses have been predicted in the quark model. However their existence is not well established so far in experiment. In this work, we explore the possibility of searching for $\Xi_{bc}$ and $\Xi_{cc}^{+}$ in the $W$-exchange processes, $\Xi_{bc}^{0}\to pK^{-}$ and $\Xi_{cc}^{+}\to \Sigma_{c}^{++}(2520)K^{-}$. Read More

Within the factorization-assisted topological-amplitude approach, we studied the 33 charmless $B_{(s)} \to VV$ decays, where $V$ stands for a light vector meson. According to the flavor flows, the amplitude of each process can be decomposed into 8 different topologies. In contrast to the conventional flavor diagrammatic approach, we further factorize each topological amplitude into decay constant, form factors and unknown universal parameters. Read More

Boson sampling is considered as a strong candidate to demonstrate the quantum computational supremacy over classical computers. However, previous proof-of-principle experiments suffered from small photon number and low sampling rates owing to the inefficiencies of the single-photon sources and multi-port optical interferometers. Here, we develop two central components for high-performance boson sampling: robust multi-photon interferometers with 0. Read More

Important high-level vision tasks such as human-object interaction, image captioning and robotic manipulation require rich semantic descriptions of objects at part level. Based upon previous work on part localization, in this paper, we address the problem of inferring rich semantics imparted by an object part in still images. We propose to tokenize the semantic space as a discrete set of part states. Read More

Multi-person pose estimation in the wild is challenging. Although state-of-the-art human detectors have demonstrated good performance, small errors in localization and recognition are inevitable. These errors can cause failures for a single-person pose estimator (SPPE), especially for methods that solely depend on human detection results. Read More

Bell's theorem shows a profound contradiction between local realism and quantum mechanics on the level of statistical predictions. It does not involve directly Einstein-Podolsky-Rosen (EPR) correlations. The paradox of Greenberger-Horne-Zeilinger (GHZ) disproves directly the concept of EPR elements of reality, based on the EPR correlations, in an all-versus-nothing way. Read More

A conjecture of Gy\'{a}rf\'{a}s and S\'{a}rk\"{o}zy says that in every $2$-coloring of the edges of the complete $k$-uniform hypergraph $K_n^k$, there are two disjoint monochromatic loose paths of distinct colors such that they cover all but at most $k-2$ vertices. A weaker form of this conjecture with $2k-5$ uncovered vertices instead of $k-2$ is proved, thus the conjecture holds for $k=3$. The main result of this paper states that the conjecture is true for all $k\ge 3$. Read More

In the era of big data, it is common to have data with multiple modalities or coming from multiple sources, known as "multi-view data". Multi-view clustering provides a natural way to generate clusters from such data. Since different views share some consistency and complementary information, previous works on multi-view clustering mainly focus on how to combine various numbers of views to improve clustering performance. Read More

2016Oct
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline{\nu}_{e}$'s. Read More

We present a detection in pre-explosion Hubble Space Telescope (HST) imaging of a point source consistent with being the progenitor star of the Type IIb supernova (SN IIb) 2016gkg. Post-explosion imaging from the Keck Adaptive Optics system was used to perform relative astrometry between the Keck and HST imaging. We identify a single point source in the HST images coincident with the SN position to 0. Read More

We predict a new class of three-dimensional topological insulators (TIs) in which the spin-orbit coupling (SOC) can more effectively generate a large band gap at $\Gamma$ point. The band gap of conventional TI such as Bi$_2$Se$_3$ is mainly limited by two factors, the strength of SOC and, from electronic structure perspective, the band gap when SOC is absent. While the former is an atomic property, we find that the latter can be minimized in a generic rock-salt lattice model in which a stable crossing of bands {\it at} the Fermi level along with band character inversion occurs for a range of parameters in the absence of SOC. Read More

In the era of big data, it is becoming common to have data with multiple modalities or coming from multiple sources, known as "multi-view data". Multi-view data are usually unlabeled and come from high-dimensional spaces (such as language vocabularies), unsupervised multi-view feature selection is crucial to many applications. However, it is nontrivial due to the following challenges. Read More

Plastic scintillation detectors for Time-of-Flight (TOF) measurements are almost essential for event-by-event identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of 50 $\times$ 50 $\times$ 3$^{t}$ mm$^3$ and 80 $\times$ 100 $\times$ 3$^{t}$ mm$^3$ have been set up at the external target facility (ETF), Institute of Modern Physics. Their time, energy and position responses are measured with $^{18}$O primary beam at 400 MeV/nucleon. Read More

Logical Probability (LP) is strictly distinguished from Statistical Probability (SP). To measure semantic information or confirm hypotheses, we need to use sampling distribution (conditional SP function) to test or confirm fuzzy truth function (conditional LP function). The Semantic Information Measure (SIM) proposed is compatible with Shannon's information theory and Fisher's likelihood method. Read More

Distributed compressive sensing is a framework considering jointly sparsity within signal ensembles along with multiple measurement vectors (MMVs). The current theoretical bound of performance for MMVs, however, is derived to be the same with that for single MV (SMV) because no assumption about signal ensembles is made. In this work, we propose a new concept of inducing the factor called "Euclidean distances between signals" for the performance analysis of MMVs. Read More

We report on the experimental realization of a ten-photon Greenberger-Horne-Zeilinger state using thin BiB$_{3}$O$_{6}$ crystals. The observed fidelity is $0.606\pm0. Read More

Double-perovskite oxides that contain both 3d and 5d transition metal elements have attracted growing interest as they provide a model system to study the interplay of strong electron interaction and large spin-orbit coupling (SOC). Here, we report on experimental and theoretical studies of the magnetic and electronic properties of double-perovskites (La$_{1-x}$Sr$_x$)$_2$CuIrO$_6$ ($x$ = 0.0, 0. Read More

Anyons are exotic quasiparticles obeying fractional statistics,whose behavior can be emulated in artificially designed spin systems.Here we present an experimental emulation of creating anyonic excitations in a superconducting circuit that consists of four qubits, achieved by dynamically generating the ground and excited states of the toric code model, i.e. Read More

We analyze charmless two-body non-leptonic B decays $B \to PP, PV$ under the framework of factorization assisted topological amplitude approach, where $P(V)$ denotes a light pseudoscalar (vector) meson. Compared with the conventional flavor diagram approach, we consider flavor $SU(3)$ breaking effect assisted by factorization hypothesis for topological diagram amplitudes of different decay modes, factorizing out the corresponding decay constants and form factors. The non-perturbative parameters of topology diagram magnitudes $\chi$ and strong phase $\phi$ are universal that can be extracted by $\chi^2$ fit from current abundant experimental data of charmless B decays. Read More

2016Aug
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

The disappearance of reactor $\bar{\nu}_e$ observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion $\sigma_\text{rel}$. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of $\bar{\nu}_e$ acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. Read More

Visual relationships capture a wide variety of interactions between pairs of objects in images (e.g. "man riding bicycle" and "man pushing bicycle"). Read More

Within the framework of $B$-meson light-cone sum rules, we compute the one-loop level QCD corrections to $B\to \pi$ transition form factors at small $ q^{2}$ region, in implement of a complete renormalization group equation evolution. To solve the renormalization group equations, we work at the "dual" space where the anomalous dimensions of the jet function and the light-cone distribution amplitudes are diagonal. With the complete renormalization group equation evolution, the form factors are almost independent of the factorization scale, which is shown numerically. Read More

A muon jet ($\mu$-jet) is a very special feature that consists of a cluster of collimated muons from the decay of a fast moving light particle of mass about $\mathcal{O}$(1 GeV). We will use this feature to search for very light particles from rare decays of the Higgs boson. For such a small angular separation of muons which might come from a long-lived particle, both ATLAS and CMS could have the displaced-vertexing-reconstruction capability. Read More

The extremely small branching ratio of $b\to ss{\bar d}$ decay in the Standard Model makes it a suitable channel to explore new-physics signals. We study this $\Delta S=2$ process in Randall-Sundrum models, including the custodially protected and the bulk-Higgs Randall-Sundrum models. Exploring the experimentally favored parameter spaces of these models, it suggests a possible enhancement of the decay rate, compared to the Standard Model result, by at most two orders of magnitude. Read More

The ATLAS and CMS collaborations observed a mild excess in the associated Higgs production with a top-quark pair ($t\bar t h$) and reported the signal strengths of $ \mu_{tth}^{\rm ATLAS}=1.81\pm 0.80$ and $\mu_{tth}^{\rm CMS}=2. Read More

2016Jul
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. Read More

We propose and experimentally demonstrate that a metasurface consisting of Pancharatnam-Berry phase optical elements can enable the full control of optical spin-to-orbital angular momentum conversion. Our approach relies on the critical interference between the transmission and reflection upon the metasurfaceto create actively tunable and controllable conversion with a high output via coherent control of the two incident beams. The introduced control methodology is general and could be an important step toward the development of functional optical devices for practical applications. Read More