C. L. Bianco - IAS/CNR

C. L. Bianco
Are you C. L. Bianco?

Claim your profile, edit publications, add additional information:

Contact Details

Name
C. L. Bianco
Affiliation
IAS/CNR
City
Chennai
Country
India

Pubs By Year

External Links

Pub Categories

 
High Energy Astrophysical Phenomena (32)
 
Astrophysics (18)
 
Cosmology and Nongalactic Astrophysics (14)
 
General Relativity and Quantum Cosmology (2)
 
Solar and Stellar Astrophysics (1)
 
Nuclear Theory (1)

Publications Authored By C. L. Bianco

Theoretical and observational evidences have been recently gained for a two-fold classification of short bursts: 1) short gamma-ray flashes (S-GRFs), with isotropic energy $E_{iso}<10^{52}$~erg and no black hole (BH) formation, and 2) the authentic short gamma-ray bursts (S-GRBs), with isotropic energy $E_{iso}>10^{52}$~erg evidencing a BH formation in the binary neutron star merging process. The signature for the BH formation consists in the on-set of the high energy ($0.1$--$100$~GeV) emission, coeval to the prompt emission, in all S-GRBs. Read More

The long lasting attempt to identify the nature of X-ray flares, observed by Swift after the prompt emission of some long gamma ray bursts (GRBs), is here addressed within the context of a special subclass of long GRBs with isotropic energy $E_{iso} > 10^{52}$~erg, recently indicated as binary-driven hypernovae (BdHNe). Such BdHNe have as progenitor a tight binary system composed of a carbon-oxygen core (CO$_\mathrm{core}$) and a neutron star (NS) undergoing an induced gravitational collapse (IGC) to a black hole (BH) triggered by the CO$_\mathrm{core}$ explosion as a supernova (SN). Only in the case of such BdHNe, when analysed in the rest frame of the sources, the time of occurrence, the temporal duration, the X-ray luminosity and the total energy of the flares correlate with the $E_{iso}$. Read More

It has previously been discovered that there is a universal power law behavior exhibited by the late X-ray emission (LXRE) of a "golden sample" (GS) of six long energetic GRBs, when observed in the rest-frame of the source. This remarkable feature, independent of the different isotropic energy (E_iso) of each GRB, has been used to estimate the cosmological redshift of some long GRBs. This analysis is extended here to a new class of 161 long GRBs, all with E_iso > 10^52 erg. Read More

In a new classification of merging binary neutron stars (NSs) we separate short gamma-ray bursts (GRBs) in two sub-classes. The ones with $E_{iso}\lesssim10^{52}$ erg coalesce to form a massive NS and are indicated as short gamma-ray flashes (S-GRFs). The hardest, with $E_{iso}\gtrsim10^{52}$ erg, coalesce to form a black hole (BH) and are indicated as genuine short-GRBs (S-GRBs). Read More

Following the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with type Ib/c supernovae, we present numerical simulations of the explosion of a carbon-oxygen (CO) core in a binary system with a neutron-star (NS) companion. The supernova ejecta trigger a \emph{hypercritical} accretion process onto the NS thanks to a copious neutrino emission and the trapping of photons within the accretion flow. We show that temperatures 1--10~MeV develop near the NS surface, hence electron-positron annihilation into neutrinos becomes the main cooling channel leading to accretion rates $10^{-9}$--$10^{-1}~M_\odot$~s$^{-1}$ and neutrino luminosities $10^{43}$--$10^{52}$~erg~s$^{-1}$ (the shorter the orbital period the higher the accretion rate). Read More

GRBs, traditionally classified as "long" and "short", have been often assumed, till recently, to originate from a single black hole (BH) with an ultrarelativistic jetted emission. There is evidence that both long and short bursts have as progenitors merging and/or accreting binaries, each composed by a different combination of carbon-oxygen cores (CO$_{\rm core}$), neutron stars (NSs), BHs and white dwarfs (WDs). Consequently, the traditional long bursts have been sub-classified as (I) X-ray flashes (XRFs), (II) binary-driven hypernovae (BdHNe), and (III) BH-supernovae (BH-SNe). Read More

There is mounting evidence for the binary nature of the progenitors of gamma-ray bursts (GRBs). For a long GRB, the induced gravitational collapse (IGC) paradigm proposes as progenitor, or "in-state", a tight binary system composed of a carbon-oxygen core (CO$_{core}$) undergoing a supernova (SN) explosion which triggers hypercritical accretion onto a neutron star (NS) companion. For a short GRB, a NS-NS merger is traditionally adopted as the progenitor. Read More

We show the existence of two families of short GRBs, both originating from the merger of binary neutron stars (NSs): family-1 with $E_{iso}<10^{52}$ erg, leading to a massive NS as the merged core, and family-2 with $E_{iso}>10^{52}$ erg, leading to a black hole (BH). Following the identification of the prototype GRB 090227B, we present the details of a new example of family-2 short burst: GRB 140619B. From the spectral analysis of the early $\sim0. Read More

We have performed our data analysis of the observations by Swift and Fermi satellites in order to probe the induced gravitational collapse (IGC) paradigm for GRBs associated with supernovae (SNe), in the "terra incognita" of GRB 130427A. We compare and contrast our data analysis with those in the literature. We have verified that the GRB 130427A conforms to the IGC paradigm by examining the power law behavior of the luminosity in the early $10^4$ s of the Swift-XRT observations. Read More

Context: The induced gravitational collapse (IGC) paradigm addresses the very energetic (10^{52}-10^{54}erg) long gamma-ray bursts (GRBs) associated to supernovae (SNe). Unlike the traditional "collapsar" model, an evolved FeCO core with a companion neutron star (NS) in a tight binary system is considered as the progenitor. This special class of sources, here named "binary driven hypernovae" (BdHNe), presents a composite sequence composed of four different episodes [. Read More

CONTEXT: The induced gravitational collapse (IGC) scenario has been introduced in order to explain the most energetic gamma ray bursts (GRBs), Eiso=10^{52}-10^{54}erg, associated with type Ib/c supernovae (SNe). It has led to the concept of binary-driven hypernovae (BdHNe) originating in a tight binary system composed by a FeCO core on the verge of a SN explosion and a companion neutron star (NS). Their evolution is characterized by a rapid sequence of events: [. Read More

Following the recently established "Binary-driven HyperNova" (BdHN) paradigm, we here interpret GRB 970828 in terms of the four episodes typical of such a model. The "Episode 1", up to 40 s after the trigger time t_0, with a time varying thermal emission and a total energy of E_{iso,1st} = 2.60 x 10^{53} erg, is interpreted as due to the onset of an hyper-critical accretion process onto a companion neutron star, triggered by the companion star, an FeCO core approaching a SN explosion. Read More

The luminosity function (LF) statistics applied to the BATSE GRBs (sources of GUSBAD catalog) is the theme approached in this work. The LF is a strong statistical tool to extract useful information from astrophysical samples, where the key point of this statistical analysis is in the detector sensitivity, where we have performed careful analysis. We applied the tool of the LF statistics to three GRB classes predicted by the Fireshell model. Read More

It has been proposed that the temporal coincidence of a gamma-ray burst (GRB) and a type Ib/c supernova (SN) can be explained with the concept of induced gravitational collapse (IGC), induced by the matter ejected from an SN Ib/c accreting onto a neutron star (NS). We found a standard luminosity light curve behavior in the late-time X-ray emission of this subclass of GRBs. We interpret this as the result of a common physical mechanism in this particular phase of the X-ray emission, possibly related to the creation of the NS from the SN process. Read More

GRB 090510, observed both by Fermi and AGILE satellites, is the first bright short-hard Gamma-Ray Burst (GRB) with an emission from the keV up to the GeV energy range. Within the Fireshell model, we interpret the faint precursor in the light curve as the emission at the transparency of the expanding e+e- plasma: the Proper-GRB (P-GRB). From the observed isotropic energy we assume a total energy Ee+e-=(1. Read More

Context. It has been proposed that the temporal coincidence of a gamma-ray burst (GRB) and a type Ib/c supernova (SN) can be explained with the concept of induced gravitational collapse (IGC), induced by the matter ejected from an SN Ib/c accreting onto a neutron star (NS). The NS is expected to reach the critical mass necessary for it to collapse to a black hole (BH) and emit a GRB. Read More

Context: GRB110709B is the first source for which Swift BAT triggered twice, with a time separation of ~10 min. The first emission (Ep. 1) goes from 40s before the 1{\deg} trigger up to 60s after it. Read More

The possibility to divide GRBs in different subclasses allow to understand better the physics underlying their emission mechanisms and progenitors. The induced gravitational collapse scenario proposes a binary progenitor to explain the time-sequence in GRBs-SNe. We show the existence of a common behavior of the late decay of the X-ray afterglow emission of this subclass of GRBs, pointing to a common physical mechanism of their late emission, consistent with the IGC picture. Read More

(Shortened) GRB080319B, with an isotropic energy E_{iso}=1.32x10^{54}erg, and GRB050904, with E_{iso}=1.04x10^{54}erg, offer the possibility of studying the spectral properties of the prompt radiation of two of the most energetic Gamma-Ray Bursts (GRBs). Read More

The time-resolved spectral analysis of GRB090227B, made possible by the Fermi-GBM data, allows to identify in this source the missing link between the genuine short and long GRBs. Within the Fireshell model [.. Read More

Following the recent theoretical interpretation of GRB 090618 and GRB 101023, we here interpret GRB 970828 in terms of a double episode emission: the first episode, observed in the first 40 s of the emission, is interpreted as the proto-black-hole emission; the second episode, observed after t$_0$+50 s, as a canonical gamma ray burst. The transition between the two episodes marks the black hole formation. The characteristics of the real GRB, in the second episode, are an energy of $E_{tot}^{e^+e^-} = 1. Read More

The joint X and gamma-ray observations of GRB 090618 by a large number of satellites offer an unprecedented possibility of testing crucial aspects of theoretical models. In particular, it allows us to test (a) the formation of an optically thick e+e- baryon plasma self-accelerating to Lorentz factors in the range 200 < g < 3000; (b) its transparency condition with the emission of a component of 10^{53-54} baryons in the TeV region and (c) the collision of these baryons with the circumburst medium clouds, characterized by dimensions of 10^{15-16} cm. In addition, these observations offer the possibility of testing a new understanding of the thermal and power-law components in the early phase of this GRB. Read More

Recent observations of the late ($t=10^8$--$10^9$ s) emission of supernovae (SNe) associated to GRBs (GRB-SN) show a distinctive emission in the X-ray regime consistent with temperatures $10^7$--$10^8$ K. Similar features have been also observed in the two Type Ic SNe SN 2002ap and SN 1994I that are not associated to GRBs. We advance the possibility that the late X-ray emission observed in GRB-SN and in isolated SN is associated to a hot neutron star (NS) just formed in the SN event, here defined as a neo-NS. Read More

We present the results of the analysis of GRB 101023 in the fireshell scenario. Its redshift has not been determined due to the lack of data in the optical band, so we tried to infer it from the Amati Relation, obtaining z=0.9. Read More

GRB 090618 offered an unprecedented opportunity to have coordinated data, by the best of the X and Gamma Ray observatories, of the nearest (z = 0.54) energetic source (10$^{54}$ erg). Using the Fermi-GBM observations of this GRB, we have analyzed this source to explore the possibility of having components yet to be observed in other sources. Read More

Due to the ultrarelativistic velocity of the expanding "fireshell" (Lorentz gamma factor \gamma \sim 10^2 - 10^3), photons emitted at the same time from the fireshell surface do not reach the observer at the same arrival time. In interpreting Gamma-Ray Bursts (GRBs) it is crucial to determine the properties of the EQuiTemporal Surfaces (EQTSs): the locus of points which are source of radiation reaching the observer at the same arrival time. In the current literature this analysis is performed only in the latest phases of the afterglow. Read More

(shortened) Context: GRB GRB 050509b, detected by the \emph{Swift} satellite, is the first case where an X-ray afterglow has been observed associated with a short gamma-ray burst (GRB). Within the fireshell model, the canonical GRB light curve presents two different components: the proper-GRB (P-GRB) and the extended afterglow. [. Read More

The fireshell model for Gamma-Ray Bursts (GRBs) naturally leads to a canonical GRB composed of a proper-GRB (P-GRB) and an afterglow. P-GRBs, introduced by us in 2001, are sometimes considered "precursors" of the main GRB event in the current literature. We show in this paper how the fireshell model leads to the understanding of the structure of GRBs, with precise estimates of the time sequence and intensities of the P-GRB and the of the afterglow. Read More

The Gamma-Ray Bursts (GRBs) offer the unprecedented opportunity to observe for the first time the blackholic energy extracted by the vacuum polarization during the process of gravitational collapse to a black hole leading to the formation of an electron-positron plasma. The uniqueness of the Kerr-Newman black hole implies that very different processes originating from the gravitational collapse a) of a single star in a binary system induced by the companion, or b) of two neutron stars, or c) of a neutron star and a white dwarf, do lead to the same structure for the observed GRB. The recent progress of the numerical integration of the relativistic Boltzmann equations with collision integrals including 2-body and 3-body interactions between the particles offer a powerful conceptual tool in order to differentiate the traditional "fireball" picture, an expanding hot cavity considered by Cavallo and Rees, as opposed to the "fireshell" model, composed of an internally cold shell of relativistically expanding electron-positron-baryon plasma. Read More

We show the preliminary results of the application of our "fireshell" model to GRB060124. This source is very peculiar because it is the first event for which both the prompt and the afterglow emission were observed simultaneously by the three Swift instruments: BAT (15-350 keV), XRT (0.2-10 keV) and UVOT (170-650 nm), due to the presence of a precursor ~ 570 s before the main burst. Read More

Within the "fireshell" model for the Gamma-Ray Bursts (GRBs) we define a "canonical GRB" light curve with two sharply different components: the Proper-GRB (P-GRB), emitted when the optically thick fireshell of electron-positron plasma originating the phenomenon reaches transparency, and the afterglow, emitted due to the collision between the remaining optically thin fireshell and the CircumBurst Medium (CBM). We outline our "canonical GRB" scenario, with a special emphasis on the discrimination between "genuine" and "fake" short GRBs. Read More

We discuss the temporal evolution of the pair plasma created in Gamma-Ray Burst sources. A particular attention is paid to the relaxation of the plasma into thermal equilibrium. We also discuss the connection between the dynamics of expansion and the spatial geometry of the plasma. Read More

We here re-examine the validity of the constant-index power-law relation between the fireshell Lorentz gamma factor and its radial coordinate, usually adopted in the current Gamma-Ray Burst (GRB) literature on the grounds of an "ultrarelativistic" approximation. Such expressions are found to be mathematically correct but only approximately valid in a very limited range of the physical and astrophysical parameters and in an asymptotic regime which is reached only for a very short time, if any. Read More

Within the "fireshell" model we define a "canonical GRB" light curve with two sharply different components: the Proper-GRB (P-GRB), emitted when the optically thick fireshell of electron-positron plasma originating the phenomenon reaches transparency, and the afterglow, emitted due to the collision between the remaining optically thin fireshell and the CircumBurst Medium (CBM). We here present the consequences of such a scenario on the theoretical interpretation of the nature of "long" and "short" GRBs. Read More

We show how an emission endowed with an instantaneous thermal spectrum in the co-moving frame of the expanding fireshell can reproduce the time-integrated GRB observed non-thermal spectrum. An explicit example in the case of GRB 031203 is presented. Read More

(Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. Read More

In the "fireshell" model we define a "canonical GRB" light curve with two sharply different components: the Proper-GRB (P-GRB), emitted when the optically thick fireshell of electron-positron plasma originating the phenomenon reaches transparency, and the afterglow, emitted due to the collision between the remaining optically thin fireshell and the CircumBurst Medium (CBM). We outline our "canonical GRB" scenario, originating from the gravitational collapse to a black hole, with a special emphasis on the discrimination between "genuine" and "fake" short GRBs. Read More

On the basis of the recent understanding of GRB050315 and GRB060218, we return to GRB970228, the first Gamma-Ray Burst (GRB) with detected afterglow. We proposed it as the prototype for a new class of GRBs with "an occasional softer extended emission lasting tenths of seconds after an initial spikelike emission". Detailed theoretical computation of the GRB970228 light curves in selected energy bands for the prompt emission are presented and compared with observational BeppoSAX data. Read More

(shortened) We study the Gamma-Ray Burst (GRB) 060218: a particularly close source at z=0.033 with an extremely long duration, namely T_{90} ~ 2000 s, related to SN 2006aj. [. Read More

(Shortened) The Swift and HETE-2 discovery of an afterglow associated possibly with short GRBs opened the new problematic of their nature and classification. This has been further enhanced by the GRB060614 observation and by a re-analysis of the BATSE catalog leading to the identification of a new GRB class with "an occasional softer extended emission lasting tenths of seconds after an initial spikelike emission". We plan: a) to fit this new class of "hybrid" sources within our "canonical GRB" scenario, where all GRBs are generated by a "common engine" (i. Read More

We plan to fit the complete gamma- and X-ray light curves of the long duration GRB060218, including the prompt emission, in order to clarify the nature of the progenitors and the astrophysical scenario of the class of GRBs associated to SNe Ib/c. The initial total energy of the electron-positron plasma E_{e^\pm}^{tot}=2.32\times 10^{50} erg has a particularly low value similarly to the other GRBs associated with SNe. Read More

We outline the main results of our GRB model, based on the three interpretation paradigms we proposed in July 2001, comparing and contrasting them with the ones in the current literature. Thanks to the observations by Swift and by VLT, this analysis points to a "canonical GRB" originating from markedly different astrophysical scenarios. The communality is that they are all emitted in the formation of a black hole with small or null angular momentum. Read More

GRB011121 is analyzed as a prototype to understand the ``flares'' recently observed by Swift in the afterglow of many GRB sources. Detailed theoretical computation of the GRB011121 light curves in selected energy bands are presented and compared and contrasted with observational BeppoSAX data. Read More

Using the Swift data of GRB 050315, we progress on the uniqueness of our theoretically predicted Gamma-Ray Burst (GRB) structure as composed by a proper-GRB (P-GRB), emitted at the transparency of an electron-positron plasma with suitable baryon loading, and an afterglow comprising the so called "prompt emission" as due to external shocks. Thanks to the Swift observations, we can theoretically fit detailed light curves for selected energy bands on a continuous time scale ranging over 10^6 seconds. The theoretically predicted instantaneous spectral distribution over the entire afterglow confirms a clear hard-to-soft behavior encompassing, continuously, the "prompt emission" all the way to the latest phases of the afterglow. Read More

The luminosity and the spectral distribution of the afterglow of GRB 031203 have been presented within our theoretical framework, which envisages the GRB structure as composed by a proper-GRB, emitted at the transparency of an electron-positron plasma with suitable baryon loading, and an afterglow comprising the "prompt emission" as due to external shocks. In addition to the GRB emission, there appears to be a prolonged soft X-Ray emission lasting for 10^6-10^7 seconds followed by an exponential decay. This additional source has been called by us URCA-3. Read More