# C. Hugonie - IdFC, Valencia

## Publications Authored By C. Hugonie

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking (NMGMSB), both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV Standard Model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2$\sigma$ excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a $b-$jet pair or a tau pair. Read More

The excess of events in the diphoton final state near 750 GeV observed by ATLAS and CMS can be explained within the NMSSM near the R-symmetry limit. Both scalars beyond the Standard Model Higgs boson have masses near 750 GeV, mix strongly, and share sizeable production cross sections in association with b-quarks as well as branching fractions into a pair of very light pseudoscalars. Pseudoscalars with a mass of ~ 210 MeV decay into collimated diphotons, whereas pseudoscalars with a mass of ~ 500-550 MeV can decay either into collimated diphotons or into three pi^0 resulting in collimated photon jets. Read More

Relatively light stops in gauge mediation models are usually made compatible with the Higgs mass of 125 GeV by introducing direct Higgs-messenger couplings. We show that such couplings are not necessary in a simple and predictive model that combines minimal gauge mediation and the next-to-minimal supersymmetric standard model (NMSSM). We show that one can obtain a 125 GeV Standard Model-like Higgs boson with stops as light as 1. Read More

The new minimal supersymmetric standard model (nMSSM), a variant of the general next to minimal supersymmetric standard model (NMSSM) without $Z_3$ symmetry, features a naturally light singlino with a mass below 75 GeV. In light of the new constraints from LHC Run-1 on the Higgs couplings, sparticles searches and flavour observables, we define the parameter space of the model which is compatible with both collider and dark matter (DM) properties. Among the regions compatible with these constraints, implemented through NMSSMTools, SModelS and MadAnalysis 5, only one with a singlino lightest supersymmetric particle (LSP) with a mass around 5 GeV can explain all the DM abundance of the universe, while heavier mixed singlinos can only form one of the DM components. Read More

We revisit a simple model that combines minimal gauge mediation and the next-to-minimal supersymmetric standard model. We show that one can obtain a 125 GeV Standard Model-like Higgs boson with stops as light as 1.1 TeV, thanks to the mixing of the Higgs with a singlet state at O(90-100) GeV. Read More

We study the parameter space of the semi-constrained NMSSM, compatible with constraints on the Standard Model like Higgs mass and signal rates, constraints from searches for squarks and gluinos, a dark matter relic density compatible with bounds from WMAP/Planck, and direct detection cross sections compatible with constraints from LUX. The remaining parameter space allows for a fine-tuning as low as about 100, an additional lighter Higgs boson in the 60-120 GeV mass range detectable in the diphoton mode or in decays into a pair of lighter CP-odd Higgs bosons, and dominantly singlino like dark matter with a mass down to 1 GeV, but possibly a very small direct detection cross section. Read More

We study the NMSSM with universal Susy breaking terms (besides the Higgs sector) at the GUT scale. Within this constrained parameter space, it is not difficult to find a Higgs boson with a mass of about 125 GeV and an enhanced cross section in the diphoton channel. An additional lighter Higgs boson with reduced couplings and a mass <123 GeV is potentially observable at the LHC. Read More

We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning. Read More

We review the theoretical and phenomenological aspects of the Next-to-Minimal Supersymmetric Standard Model: the Higgs sector including radiative corrections and the 2-loop beta-functions for all parameters of the general NMSSM; the tadpole and domain wall problems, baryogenesis; NMSSM phenomenology at colliders, B physics and dark matter; specific scenarios as the constrained NMSSM, Gauge Mediated Supersymmetry Breaking, U(1)'-extensions, CP and R-parity violation. Read More

We reexamine the constrained version of the Next-to-Minimal Supersymmetric Standard Model with semi universal parameters at the GUT scale (CNMSSM). We include constraints from collider searches for Higgs and SUSY particles, upper bound on the relic density of dark matter, measurements of the muon anomalous magnetic moment and of B-physics observables as well as direct searches for dark matter. We then study the prospects for direct detection of dark matter in large scale detectors and comment on the prospects for discovery of heavy Higgs states at the LHC. Read More

We study possible effects of a light CP-odd Higgs boson on radiative Upsilon decays in the Next-to-Minimal Supersymmetric Standard Model. Recent constraints from CLEO on radiative Upsilon(1S) decays are translated into constraints on the parameter space of CP-odd Higgs boson masses and couplings, and compared to constraints from B physics and the muon anomalous magnetic moment. Possible Higgs - eta_b(nS) mixing effects are discussed, notably in the light of the recent measurement of the eta_b(1S) mass by Babar: The somewhat large Upsilon(1S) - eta_b(1S) hyperfine splitting could easily be explained by the presence of a CP-odd Higgs boson with a mass in the range 9. Read More

**Authors:**S. Dawson, M. Grazzini, A. Nikitenko, M. Schumacher, N. E. Adam, T. Aziz, J. R. Andersen, A. Belyaev, T. Binoth, S. Catani, M. Ciccolini, J. E. Cole, S. Dawson, A. Denner, S. Dittmaier, A. Djouadi, M. Drees, U. Ellwanger, C. Englert, T. Figy, E. Gabrielli, D. Giordano, S. Gleyzer, R. Godbole, M. Grazzini, S. Greder, V. Halyo, M. Hashemi, S. Heinemeyer, G. Heinrich, M. Herquet, S. Hesselbach, C. Hugonie, C. B. Jackson, N. Kauer, R. Kinnunen, S. F. King, S. Lehti, F. Maltoni, B. Mele, P. Mertsch, M. Moretti, S. Moretti, M. Muhlleitner, A. K. Nayak, A. Nikitenko, C. Oleari, F. Piccinini, R. Pittau, J. Rathsman, I. Rottlaender, C. H. Shepherd-Themistocleous, M. Schumacher, J. M. Smillie, A. Sopczak, M. Spira, M. Takahashi, A. M. Teixeira, I. R. Tomalin, M. Vazquez Acosta, G. Weiglein, C. D. White, D. Zeppenfeld

**Category:**High Energy Physics - Phenomenology

Report of the Working Group on Higgs Bosons for the Workshop, ``Physics at TeV Colliders'', Les Houches, France, 11-29 June, 2007. Read More

We discuss constrained and semi--constrained versions of the next--to--minimal supersymmetric extension of the Standard Model (NMSSM) in which a singlet Higgs superfield is added to the two doublet superfields that are present in the minimal extension (MSSM). This leads to a richer Higgs and neutralino spectrum and allows for many interesting phenomena that are not present in the MSSM. In particular, light Higgs particles are still allowed by current constraints and could appear as decay products of the heavier Higgs states, rendering their search rather difficult at the LHC. Read More

**Authors:**B. C. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema, D. Choudhury, K. Desch, U. Ellwanger, P. Gambino, R. Godbole, T. Goto, J. Guasch, M. Guchait, T. Hahn, S. Heinemeyer, C. Hugonie, T. Hurth, S. Kraml S. Kreiss, J. Lykken, F. Moortgat, S. Moretti, S. Penaranda, T. Plehn, W. Porod, A. Pukhov, P. Richardson, M. Schumacher, L. Silvestrini, P. Skands, P. Slavich, M. Spira, G. Weiglein, P. Wienemann

**Category:**High Energy Physics - Phenomenology

The Supersymmetry Les Houches Accord (SLHA) provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalisations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavour, as well as the simplest next-to-minimal model. Read More

We explore the parameter space of a Constrained Next-to-Minimal Supersymmetric Standard Model with GUT scale boundary conditions (CNMSSM) and find regions where the relic density of the lightest neutralino is compatible with the WMAP measurement. We emphasize differences with the MSSM: cases where annihilation of the LSP occurs via a Higgs resonance at low values of tan\beta and cases where the LSP has a large singlino component. The particle spectrum as well as theoretical and collider constraints are calculated with NMSSMTools. Read More

NMSPEC is a Fortran code that computes the sparticle and Higgs masses, as well as Higgs decay widths and couplings in the NMSSM, with soft SUSY breaking terms specified at MGUT. Exceptions are the soft singlet mass m_s^2 and the singlet self coupling kappa, that are both determined in terms of the other parameters through the minimization equations of the Higgs potential. We present a first analysis of the NMSSM parameter space with universal SUSY breaking terms at MGUT -- except for m_s and A_kappa -- that passes present experimental constraints on sparticle and Higgs masses. Read More

We update the upper bound on the lightest CP even Higgs mass in the NMSSM, which is given as a function of tan(beta) and lambda. We include the available one and two loop corrections to the NMSSM Higgs masses, and constraints from the absence of Landau singularities below the GUT scale as well as from the stability of the NMSSM Higgs potential. For m_top varying between 171. Read More

**Authors:**S. Kraml, E. Accomando, A. G. Akeroyd, E. Akhmetzyanova, J. Albert, A. Alves, N. Amapane, M. Aoki, G. Azuelos, S. Baffioni, A. Ballestrero, V. Barger, A. Bartl, P. Bechtle, G. Belanger, A. Belhouari, R. Bellan, A. Belyaev, P. Benes, K. Benslama, W. Bernreuther, M. Besancon, G. Bevilacqua, M. Beyer, M. Bluj, S. Bolognesi, M. Boonekamp, F. Borzumati, F. Boudjema, A. Brandenburg, T. Brauner, C. P. Buszello, J. M. Butterworth, M. Carena, D. Cavalli, G. Cerminara, S. Y. Choi, B. Clerbaux, C. Collard, J. A. Conley, A. Deandrea, S. De Curtis, R. Dermisek, A. De Roeck, G. Dewhirst, M. A. Diaz, J. L. Diaz-Cruz, D. D. Dietrich, M. Dolgopolov, D. Dominici, M. Dubinin, O. Eboli, J. Ellis, N. Evans, L. Fano, J. Ferland, S. Ferrag, S. P. Fitzgerald, H. Fraas, F. Franke, S. Gennai, I. F. Ginzburg, R. M. Godbole, T. Gregoire, G. Grenier, C. Grojean, S. B. Gudnason, J. F. Gunion, H. E. Haber, T. Hahn, T. Han, V. Hankele, C. Hays, S. Heinemeyer, S. Hesselbach, J. L. Hewett, K. Hidaka, M. Hirsch, W. Hollik, D. Hooper, J. Hosek, J. Hubisz, C. Hugonie, J. Kalinowski, S. Kanemura, V. Kashkan, T. Kernreiter, W. Khater, V. A. Khoze, W. Kilian, S. F. King, O. Kittel, G. Klamke, J. L. Kneur, C. Kouvaris, M. Krawczyk, P. Krstonosic, A. Kyriakis, P. Langacker, M. P. Le, H. -S. Lee, J. S. Lee, M. C. Lemaire, Y. Liao, B. Lillie, V. Litvin, H. E. Logan, B. McElrath, T. Mahmoud, E. Maina, C. Mariotti, P. Marquard, A. D. Martin, K. Mazumdar, D. J. Miller, P. Mine, K. Moenig, G. Moortgat-Pick, S. Moretti, M. M. Muhlleitner, S. Munir, R. Nevzorov, H. Newman, P. Niezurawski, A. Nikitenko, R. Noriega-Papaqui, Y. Okada, P. Osland, A. Pilaftsis, W. Porod, H. Przysiezniak, A. Pukhov, D. Rainwater, A. Raspereza, J. Reuter, S. Riemann, S. Rindani, T. G. Rizzo, E. Ros, A. Rosado, D. Rousseau, D. P. Roy, M. G. Ryskin, H. Rzehak, F. Sannino, E. Schmidt, H. Schroder, M. Schumacher, A. Semenov, E. Senaha, G. Shaughnessy, R. K. Singh, J. Terning, L. Vacavant, M. Velasco, A. Villanova del Moral, F. von der Pahlen, G. Weiglein, J. Williams, K. Williams, A. F. Zarnecki, D. Zeppenfeld, D. Zerwas, P. M. Zerwas, A. R. Zerwekh, J. Ziethe

There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. Read More

**Authors:**B. C. Allanach

^{1}, C. Grojean

^{2}, P. Skands

^{3}, E. Accomando, G. Azuelos, H. Baer, C. Balazs, G. Belanger, K. Benakli, F. Boudjema, B. Brelier, V. Bunichev, G. Cacciapaglia, M. Carena, D. Choudhury, P. -A. Delsart, U. De Sanctis, K. Desch, B. A. Dobrescu, L. Dudko, M. El Kacimi, U. Ellwanger, S. Ferrag, A. Finch, F. Franke, H. Fraas, A. Freitas, P. Gambino, N. Ghodbane, R. M. Godbole, D. Goujdami, Ph. Gris, J. Guasch, M. Guchait, T. Hahn, S. Heinemeyer, A. Hektor, S. Hesselbach, W. Hollik, C. Hugonie, T. Hurth, J. Idarraga, O. Jinnouchi, J. Kalinowski, J. -L. Kneur, S. Kraml, M. Kadastik, K. Kannike, R. Lafaye, G. Landsberg, T. Lari, J. S. Lee, J. Lykken, F. Mahmoudi, M. Mangano, A. Menon, D. J. Miller, T. Millet, C. Milstene, S. Montesano, F. Moortgat, G. Moortgat-Pick, S. Moretti, D. E. Morrissey, S. Muanza, M. M. Muhlleitner, M. Muntel, H. Nowak, T. Ohl, S. Penaranda, M. Perelstein, E. Perez, S. Perries, M. Peskin, J. Petzoldt, A. Pilaftsis, T. Plehn, G. Polesello, A. Pompos, W. Porod, H. Przysiezniak, A. Pukhov, M. Raidal, D. Rainwater, A. R. Raklev, J. Rathsman, J. Reuter, P. Richardson, S. D. Rindani, K. Rolbiecki, H. Rzehak, M. Schumacher, S. Schumann, A. Semenov, L. Serin, G. Servant, C. H. Shepherd-Themistocleous, S. Sherstnev, L. Silvestrini, R. K. Singh, P. Slavich, M. Spira, A. Sopczak, K. Sridhar, L. Tompkins, C. Troncon, S. Tsuno, K. Wagh, C. E. M. Wagner, G. Weiglein, P. Wienemann, D. Zerwas, V. Zhukov

**Affiliations:**

^{1}ed.,

^{2}ed.,

^{3}ed.

**Category:**High Energy Physics - Phenomenology

The work contained herein constitutes a report of the "Beyond the Standard Model'' working group for the Workshop "Physics at TeV Colliders", Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology. Read More

We describe the the improved properties of the NMHDECAY program, that is designed to compute Higgs and sparticle masses and Higgs decay widths in the NMSSM. In the version 2.0, Higgs decays into squarks and sleptons are included, accompagnied by a calculation of the squark, gluino and slepton spectrum and tests against constraints from LEP and the Tevatron. Read More

We present a code to compute the relic density of dark matter in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). Dominant corrections to the Higgs masses are calculated with NMHDECAY as well as theoretical and collider constraints. All neutralino annihilation and coannihilation processes are then computed with an extended version of micrOMEGAs, taking into acount higher order corrections to Higgs vertices. Read More

We compute the leading logarithmic radiative corrections to the lightest Higgs mass in the NMSSM involving the electroweak gauge couplings and in the NMSSM specific Yukawa couplings lambda and kappa (including all mixed combinations), which are induced by chargino, neutralino and Higgs boson loops. The effect of the NMSSM specific Yukawa couplings lambda and kappa is to increase the upper bound on the lightest Higgs mass by up to ~2 GeV, but they can also decrease the lightest Higgs mass by up to ~-20 GeV. Read More

We identify scenarios not ruled out by LEP data in which NMSSM Higgs detection at the LHC will be particularly challenging. We first review the `no-lose' theorem for Higgs discovery at the LHC that applies if Higgs bosons do not decay to other Higgs bosons - namely, with L=300 fb^-1, there is always one or more `standard' Higgs detection channel with at least a 5 sigma signal. However, we provide examples of no-Higgs-to-Higgs cases for which all the standard signals are no larger than 7 sigma implying that if the available L is smaller or the simulations performed by ATLAS and CMS turn out to be overly optimistic, all standard Higgs signals could fall below 5 sigma even in the no-Higgs-to-Higgs part of NMSSM parameter space. Read More

We reconsider the possible presence of charge and colour breaking minima in the scalar potential of the minimal supersymmetric standard model (MSSM) and its minimal generalization with R-parity explicitly broken by bilinear terms (RMSSM). First we generalize some results previously derived for the MSSM case. Next we investigate how robust is the MSSM against its RMSSM extension. Read More

**Authors:**LHC/LC Study Group, :, G. Weiglein, T. Barklow, E. Boos, A. De Roeck, K. Desch, F. Gianotti, R. Godbole, J. F. Gunion, H. E. Haber, S. Heinemeyer, J. L. Hewett, K. Kawagoe, K. Monig, M. M. Nojiri, G. Polesello, F. Richard, S. Riemann, W. J. Stirling, A. G. Akeroyd, B. C. Allanach, D. Asner, S. Asztalos, H. Baer, M. Battaglia, U. Baur, P. Bechtle, G. Belanger, A. Belyaev, E. L. Berger, T. Binoth, G. A. Blair, S. Boogert, F. Boudjema, D. Bourilkov, W. Buchmuller, V. Bunichev, G. Cerminara, M. Chiorboli, H. Davoudiasl, S. Dawson, S. De Curtis, F. Deppisch, M. A. Diaz, M. Dittmar, A. Djouadi, D. Dominici, U. Ellwanger, J. L. Feng, I. F. Ginzburg, A. Giolo-Nicollerat, B. K. Gjelsten, S. Godfrey, D. Grellscheid, J. Gronberg, E. Gross, J. Guasch, K. Hamaguchi, T. Han, J. Hisano, W. Hollik, C. Hugonie, T. Hurth, J. Jiang, A. Juste, J. Kalinowski, W. Kilian, R. Kinnunen, S. Kraml, M. Krawczyk, A. Krokhotine, T. Krupovnickas, R. Lafaye, S. Lehti, H. E. Logan, E. Lytken, V. Martin, H. -U. Martyn, D. J. Miller, S. Moretti, F. Moortgat, G. Moortgat-Pick, M. Muhlleitner, P. Niezurawski, A. Nikitenko, L. H. Orr, P. Osland, A. F. Osorio, H. Pas, T. Plehn, W. Porod, A. Pukhov, F. Quevedo, D. Rainwater, M. Ratz, A. Redelbach, L. Reina, T. Rizzo, R. Ruckl, H. J. Schreiber, M. Schumacher, A. Sherstnev, S. Slabospitsky, J. Sola, A. Sopczak, M. Spira, M. Spiropulu, Z. Sullivan, M. Szleper, T. M. P. Tait, X. Tata, D. R. Tovey, A. Tricomi, M. Velasco, D. Wackeroth, C. E. M. Wagner, S. Weinzierl, P. Wienemann, T. Yanagida, A. F. Zarnecki, D. Zerwas, P. M. Zerwas, L. Zivkovic

**Category:**High Energy Physics - Phenomenology

Physics at the Large Hadron Collider (LHC) and the International e+e- Linear Collider (ILC) will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Read More

We analyse the direct detection of neutralino dark matter in the framework of the Next-to-Minimal Supersymmetric Standard Model. After performing a detailed analysis of the parameter space, taking into account all the available constraints from LEPII, we compute the neutralino-nucleon cross section, and compare the results with the sensitivity of detectors. We find that sizable values for the detection cross section, within the reach of dark matter detectors, are attainable in this framework. Read More

The Fortran code NMHDECAY computes the masses, couplings and decay widths of
all Higgs bosons of the NMSSM in terms of its parameters at the electroweak
(SUSY breaking) scale: the Yukawa couplings lambda and kappa, the soft
trilinear terms A_lambda and A_kappa, and tan(beta) and mu_eff = lambda*~~.
The computation of the spectrum includes leading two loop terms, electroweak
corrections and propagator corrections. The computation of the decay widths is
carried out as in HDECAY, but (for the moment) without three body decays. Read More~~

**Authors:**K. A. Assamagan, M. Narain, A. Nikitenko, M. Spira, D. Zeppenfeld, J. Alwall, C. Balázs, T. Barklow, U. Baur, C. Biscarat, M. Bisset, E. Boos, G. Bozzi, O. Brein, J. Campbell, S. Catani, M. Ciccolini, K. Cranmer, A. Dahlhoff, S. Dawson, D. de Florian, A. De Roeck, V. Del Duca, S. Dittmaier, A. Djouadi, V. Drollinger, L. Dudko, M. Dührssen, U. Ellwanger, M. Escalier, Y. Q. Fang, S. Ferrag, J. R. Forshaw, M. Grazzini, J. Guasch, M. Guchait, J. F. Gunion, T. Hahn, R. Harlander, H. -J. He, S. Heinemeyer, J. Heyninck, W. Hollik, C. Hugonie, C. Jackson, N. Kauer, N. Kersting, V. Khoze, N. Kidonakis, R. Kinnunen, M. Krämer, Y. -P. Kuang, B. Laforge, S. Lehti, M. Lethuillier, J. Li, H. Logan, S. Lowette, F. Maltoni, R. Mazini, B. Mellado, F. Moortgat, S. Moretti, Z. Nagy, P. Nason, C. Oleari, S. Paganis, S. Penaranda, T. Plehn, W. Quayle, D. Rainwater, J. Rathsman, O. Ravat, L. Reina, A. Sabio Vera, A. Sopczak, Z. Trócsányi, P. Vanlaer, D. Wackeroth, G. Weiglein, S. Willenbrock, Sau Lan Wu, C. -P. Yuan, B. Zhang

**Category:**High Energy Physics - Phenomenology

Theoretical progress in Higgs boson production and background processes is discussed with particular emphasis on QCD corrections at and beyond next-to-leading order as well as next-to-leading order electroweak corrections. The residual theoretical uncertainties of the investigated processes are estimated in detail. Moreover, recent investigations of the MSSM Higgs sector and other extensions of the SM Higgs sector are presented. Read More

**Affiliations:**

^{1}LPT, Orsay,

^{2}U.C. Davis,

^{3}IdFC, Valencia,

^{4}Southampton

**Category:**High Energy Physics - Phenomenology

We demonstrate that Higgs discovery at the LHC is possible in the context of the NMSSM even for those scenarios such that the only strongly produced Higgs boson is a very SM-like CP-even scalar which decays almost entirely to a pair of relatvely light CP-odd states. In combination with other search channels, we are on the verge of demonstrating that detection of at least one of the NMSSM Higgs bosons is guaranteed at the LHC for accumulated luminosity of $300 {\rm fb}^{-1}$. Read More

We scan the parameter space of the NMSSM for the observability of a Higgs boson at the LHC with $300 {\rm fb}^{-1}$ integrated luminosity per detector, taking the present LEP constraints into account. We focus on the regions of parameter space for which none of the usually considered LHC detection modes are viable due to the fact that the only light non-singlet (and, therefore, potentially visible) Higgs boson, $h$, decays mainly to two CP-odd light Higgs bosons, $h\to a a$. We simulate the $WW\to h \to aa$ detection mode. Read More

We study the possibilities of spontaneous CP violation in the Next-to-Minimal Supersymmetric Standard Model with an extra singlet tadpole term in the scalar potential. We calculate the Higgs boson masses and couplings with radiative corrections including dominant two loop terms. We show that it is possible to satisfy the LEP constraints on the Higgs boson spectrum with non-trivial spontaneous CP violating phases. Read More

**Authors:**G. Azuelos, J. Gunion, J. Hewett, G. Landsberg, K. Matchev, F. Paige, T. Rizzo, L. Rurua, S. Abdullin, A. Albert, B. Allanach, T. Blazek, D. Cavalli, F. Charles, K. Cheung, A. Dedes, S. Dimopoulos, H. Dreiner, U. Ellwanger, D. S. Gorbunov, S. Heinemeyer, I. Hinchliffe, C. Hugonie, S. Moretti, G. Polesello, H. Przysiezniak, P. Richardson, L. Vacavant, G. Weiglein

**Category:**High Energy Physics - Phenomenology

Report of the "Beyond the Standard Model" working group for the Workshop `Physics at TeV Colliders', Les Houches, France, 21 May - 1 June 2001. It consists of 18 separate parts: 1. Preface; 2. Read More

**Authors:**D. Cavalli, A. Djouadi, K. Jakobs, A. Nikitenko, M. Spira, C. E. M. Wagner, W. -M. Yao, K. A. Assamagan, G. Azuelos, S. Balatenychev, G. Bélanger, M. Bisset, A. Bocci, F. Boudjema, C. Buttar, M. Carena, S. Catani, V. Cavasinni, Y. Coadou, D. Costanzo, A. Cottrant, A. K. Datta, A. Deandrea, D. de Florian, V. Del Duca, B. Di Girolamo, V. Drollinger, T. Figy, M. Frank, R. M. Godbole, M. Grazzini, M. Guchait, R. Harper, S. Heinemeyer, J. Hobbs, W. Hollik, C. Hugonie, V. I. Ilyin, W. B. Kilgore, R. Kinnunen, M. Klute, R. Lafaye, Y. Mambrini, R. Mazini, K. Mazumdar, F. Moortgat, S. Moretti, G. Negri, L. Neukermans, C. Oleari, A. Pukhov, D. Rainwater, E. Richter-Was, D. P. Roy, C. R. Schmidt, A. Semenov, J. Thomas, I. Vivarelli, G. Weiglein, D. Zeppenfeld

**Category:**High Energy Physics - Phenomenology

Report of the Higgs working group for the Workshop `Physics at TeV Colliders', Les Houches, France, 21 May - 1 June 2001. It contains 7 separate sections: A. Theoretical Developments B. Read More

**Affiliations:**

^{1}Lab. Physique,

^{2}U.C. Davis,

^{3}Durham

**Category:**High Energy Physics - Phenomenology

We scan the parameter space of the NMSSM for the observability of at least one Higgs boson at the LHC with $300\fbi$ integrated luminosity, taking the present LEP2 constraints into account. We restrict the scan to those regions of parameter space for which Higgs boson decays to other Higgs bosons and/or supersymmetric particles are kinematically forbidden. We find that if $WW$-fusion detection modes for a light Higgs boson are not taken into account, then there are still significant regions in the scanned portion of the NMSSM parameter space where no Higgs boson can be observed at the $5\sigma$ level, despite the recent improvements in ATLAS and CMS procedures and techniques and even if we combine all non-fusion discovery channels. Read More

**Affiliations:**

^{1}IPPP,

^{2}CERN and IPPP

**Category:**High Energy Physics - Phenomenology

We investigate the potential of current and planned hadron colliders operating at the TeV scale in disentangling the structure of the Higgs sector of non-minimal Supersymmetric extensions of the Standard Model with an extra gauge singlet. We assume universality of the soft Supersymmetry breaking terms at the GUT scale as well as a CP-even Higgs boson with mass around 115 GeV, as suggested by LEP. We find that mixing angles between the doublet and singlet Higgs states are always small. Read More

We study the phenomenology of a new Minimally-extended Supersymmetric Standard Model (nMSSM) where a gauge singlet superfield is added to the MSSM spectrum. The superpotential of this model contains no dimensionful parameters, thus solving the mu-problem of the MSSM. A global discrete R-symmetry, forbidding the cubic singlet self-interaction, imposed on the complete theory, guarantees its stability with respect to generated higher-order tadpoles of the singlet and solves both the domain wall and Peccei-Quinn axion problems. Read More

We give the upper bounds on the masses of the lightest and second lightest CP even Higgs bosons in the NMSSM, the MSSM extended by a gauge singlet. The dominant two loop corrections are included. Since the coupling R of the lightest Higgs scalar to gauge bosons can be small, we study in detail the relation between masses and couplings of both lightest scalars. Read More

We study the naturalness of electroweak symmetry breaking and baryogenesis in the next-to-minimal supersymmetric standard model (NMSSM). Our study is motivated by the recent LEP bounds on the Higgs boson mass which severely constrains the low \tan\beta region of the minimal supersymmetric standard model (MSSM). We show that the low \tan \beta region of the NMSSM is clearly favoured over the MSSM with regard to the physical Higgs boson mass, fine-tuning, and electroweak baryogenesis. Read More

**Authors:**S. Ambrosanio, H. Baer, A. Brignole, A. Castro, M. Chertok, K. Cheung, L. Clavelli, D. Cutts, M. Cvetic, D. Dooling, H. Dreiner, B. Dutta, U. Ellwanger, L. Everett, F. Feruglio, G. F. Giudice, J. F. Gunion, J. L. Hewett, C. Hugonie, K. Kang, S. K. Kang, G. Landsberg, P. Langacker, M. Mangano, D. McKay, R. N. Mohapatra, S. Mrenna, D. J. Muller, R. Rattazzi, T. Rizzo, J. W. Wang, J. D. Wells, F. Zwirner

**Category:**High Energy Physics - Phenomenology

There are many low-energy models of supersymmetry breaking parameters which are motivated by theoretical and experimental considerations. Here, we discuss some of the lesser-known theories of low-energy supersymmetry, and outline their phenomenological consequences. In some cases, these theories have more gauge symmetry or particle content than the Minimal Supersymmetric Standard Model. Read More

We study the upper limits on the mass of the lightest and second lightest CP even Higgs bosons in the (M+1)SSM, the MSSM extended by a gauge singlet. The dominant two loop contributions to the effective potential are included, which reduce the Higgs masses by 10 GeV. Since the coupling R of the lightest Higgs scalar to gauge bosons can be small, we study in detail the relations between the masses and couplings of both lightest scalars. Read More

We study the constraints on the parameter space of the supersymmetric standard model extended by a gauge singlet, which arise from the absence of global minima of the effective potential with slepton or squark vevs. Particular attention is paid to the so-called ``UFB'' directions in field space, which are F-flat in the MSSM. Although these directions are no longer F-flat in the (M+1)SSM, we show that the corresponding MSSM-like constraints on m_0/M_{1/2} apply also to the (M+1)SSM. Read More

**Category:**High Energy Physics - Phenomenology

We study unconventional signatures of the NMSSM (the MSSM with an additional gauge singlet) with a singlino LSP. Compared to sparticle production processes in the MSSM, these consist in additional cascades (one or two additional l+ l-, tau+ tau- or b bbar pairs or photons), possibly with macroscopically displaced vertices with distances varying from millimeters to several meters. Read More

We study the possible signals of the (M+1)SSM with a singlino LSP at LEP2. First we identify regions of the parameter space which are ruled out by negative results of sparticle searches in the context of the MSSM. In the remaining kinematically accessible regions we present total event rates for topologies which require further studies, i. Read More

In the (M+1)SSM an additional gauge singlet Weyl spinor appears in the neutralino sector. For a large part of the parameter space this approximative eigenstate is the true LSP. Then most sparticle decays proceed via an additional cascade involving the NLSP -> LSP transition, where the NLSP is the non-singlet next-to-lightest neutralino. Read More