C. F. Perdrisat - Jefferson Lab Hall A Collaboration

C. F. Perdrisat
Are you C. F. Perdrisat?

Claim your profile, edit publications, add additional information:

Contact Details

Name
C. F. Perdrisat
Affiliation
Jefferson Lab Hall A Collaboration
Location

Pubs By Year

External Links

Pub Categories

 
Nuclear Experiment (42)
 
Nuclear Theory (6)
 
High Energy Physics - Experiment (5)
 
High Energy Physics - Phenomenology (3)
 
Physics - Instrumentation and Detectors (1)

Publications Authored By C. F. Perdrisat

Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. Read More

New results are reported from a measurement of $\pi^0$ electroproduction near threshold using the $p(e,e^{\prime} p)\pi^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. Read More

Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, $Q^2$, and at different four-momentum transfer, t, can be used to probe QCD's transition from meson-nucleon degrees of freedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in $\pi^-$ and $\pi^+$ electroproduction are particularly informative. The ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from electroproduction data. Read More

2014May
Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration

In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Electroproduction of the hypernucleus Lambda-9Li has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. Read More

2014Apr
Affiliations: 1The Jefferson Lab Fpi Collaboration, 2The Jefferson Lab Fpi Collaboration, 3The Jefferson Lab Fpi Collaboration, 4The Jefferson Lab Fpi Collaboration, 5The Jefferson Lab Fpi Collaboration, 6The Jefferson Lab Fpi Collaboration, 7The Jefferson Lab Fpi Collaboration, 8The Jefferson Lab Fpi Collaboration, 9The Jefferson Lab Fpi Collaboration, 10The Jefferson Lab Fpi Collaboration, 11The Jefferson Lab Fpi Collaboration, 12The Jefferson Lab Fpi Collaboration, 13The Jefferson Lab Fpi Collaboration, 14The Jefferson Lab Fpi Collaboration, 15The Jefferson Lab Fpi Collaboration, 16The Jefferson Lab Fpi Collaboration, 17The Jefferson Lab Fpi Collaboration, 18The Jefferson Lab Fpi Collaboration, 19The Jefferson Lab Fpi Collaboration, 20The Jefferson Lab Fpi Collaboration, 21The Jefferson Lab Fpi Collaboration, 22The Jefferson Lab Fpi Collaboration, 23The Jefferson Lab Fpi Collaboration, 24The Jefferson Lab Fpi Collaboration, 25The Jefferson Lab Fpi Collaboration, 26The Jefferson Lab Fpi Collaboration, 27The Jefferson Lab Fpi Collaboration, 28The Jefferson Lab Fpi Collaboration, 29The Jefferson Lab Fpi Collaboration, 30The Jefferson Lab Fpi Collaboration, 31The Jefferson Lab Fpi Collaboration, 32The Jefferson Lab Fpi Collaboration, 33The Jefferson Lab Fpi Collaboration, 34The Jefferson Lab Fpi Collaboration, 35The Jefferson Lab Fpi Collaboration, 36The Jefferson Lab Fpi Collaboration, 37The Jefferson Lab Fpi Collaboration, 38The Jefferson Lab Fpi Collaboration, 39The Jefferson Lab Fpi Collaboration, 40The Jefferson Lab Fpi Collaboration, 41The Jefferson Lab Fpi Collaboration, 42The Jefferson Lab Fpi Collaboration, 43The Jefferson Lab Fpi Collaboration, 44The Jefferson Lab Fpi Collaboration, 45The Jefferson Lab Fpi Collaboration, 46The Jefferson Lab Fpi Collaboration, 47The Jefferson Lab Fpi Collaboration, 48The Jefferson Lab Fpi Collaboration, 49The Jefferson Lab Fpi Collaboration, 50The Jefferson Lab Fpi Collaboration, 51The Jefferson Lab Fpi Collaboration, 52The Jefferson Lab Fpi Collaboration, 53The Jefferson Lab Fpi Collaboration, 54The Jefferson Lab Fpi Collaboration, 55The Jefferson Lab Fpi Collaboration, 56The Jefferson Lab Fpi Collaboration, 57The Jefferson Lab Fpi Collaboration, 58The Jefferson Lab Fpi Collaboration, 59The Jefferson Lab Fpi Collaboration, 60The Jefferson Lab Fpi Collaboration, 61The Jefferson Lab Fpi Collaboration, 62The Jefferson Lab Fpi Collaboration, 63The Jefferson Lab Fpi Collaboration, 64The Jefferson Lab Fpi Collaboration, 65The Jefferson Lab Fpi Collaboration, 66The Jefferson Lab Fpi Collaboration, 67The Jefferson Lab Fpi Collaboration, 68The Jefferson Lab Fpi Collaboration, 69The Jefferson Lab Fpi Collaboration, 70The Jefferson Lab Fpi Collaboration, 71The Jefferson Lab Fpi Collaboration, 72The Jefferson Lab Fpi Collaboration, 73The Jefferson Lab Fpi Collaboration, 74The Jefferson Lab Fpi Collaboration, 75The Jefferson Lab Fpi Collaboration, 76The Jefferson Lab Fpi Collaboration, 77The Jefferson Lab Fpi Collaboration, 78The Jefferson Lab Fpi Collaboration, 79The Jefferson Lab Fpi Collaboration, 80The Jefferson Lab Fpi Collaboration, 81The Jefferson Lab Fpi Collaboration, 82The Jefferson Lab Fpi Collaboration, 83The Jefferson Lab Fpi Collaboration, 84The Jefferson Lab Fpi Collaboration, 85The Jefferson Lab Fpi Collaboration, 86The Jefferson Lab Fpi Collaboration, 87The Jefferson Lab Fpi Collaboration, 88The Jefferson Lab Fpi Collaboration

The study of exclusive $\pi^{\pm}$ electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio $R_L=\sigma_L^{\pi^-}/\sigma_L^{\pi^+}$ is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of $R_T=\sigma_T^{\pi^-}/\sigma_T^{\pi^+}$ from unity at small $-t$, to 1/4 at large $-t$, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Read More

The ratio of the proton form factors, GEp/GMp, has been measured from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. Read More

Measurements of the production of forward jets from transversely polarized proton collisions at $\sqrt{s}=500$ GeV conducted at the Relativistic Heavy Ion Collider (RHIC) are reported. Our measured jet cross section is consistent with hard scattering expectations. Our measured analyzing power for forward jet production is small and positive, and provides constraints on the Sivers functions that are related to partonic orbital angular momentum through theoretical models. Read More

The Proton Radius Puzzle is the inconsistency between the proton radius determined from muonic hydrogen and the proton radius determined from atomic hydrogen level transitions and ep elastic scattering. No generally accepted resolution to the Puzzle has been found. Possible solutions generally fall into one of three categories: the two radii are different due to novel beyond-standard-model physics, the two radii are different due to novel aspects of nucleon structure, and the two radii are the same, but there are underestimated uncertainties or other issues in the ep experiments. Read More

The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. Read More

2012May
Authors: H. Fonvieille1, G. Laveissiere2, N. Degrande3, S. Jaminion4, C. Jutier5, L. Todor6, R. Di Salvo7, L. Van Hoorebeke8, L. C. Alexa9, B. D. Anderson10, K. A. Aniol11, K. Arundell12, G. Audit13, L. Auerbach14, F. T. Baker15, M. Baylac16, J. Berthot17, P. Y. Bertin18, W. Bertozzi19, L. Bimbot20, W. U. Boeglin21, E. J. Brash22, V. Breton23, H. Breuer24, E. Burtin25, J. R. Calarco26, L. S. Cardman27, C. Cavata28, C. -C. Chang29, J. -P. Chen30, E. Chudakov31, E. Cisbani32, D. S. Dale33, C. W. deJager34, R. De Leo35, A. Deur36, N. d'Hose37, G. E. Dodge38, J. J. Domingo39, L. Elouadrhiri40, M. B. Epstein41, L. A. Ewell42, J. M. Finn43, K. G. Fissum44, G. Fournier45, B. Frois46, S. Frullani47, C. Furget48, H. Gao49, J. Gao50, F. Garibaldi51, A. Gasparian52, S. Gilad53, R. Gilman54, A. Glamazdin55, C. Glashausser56, J. Gomez57, V. Gorbenko58, P. Grenier59, P. A. M. Guichon60, J. O. Hansen61, R. Holmes62, M. Holtrop63, C. Howell64, G. M. Huber65, C. E. Hyde66, S. Incerti67, M. Iodice68, J. Jardillier69, M. K. Jones70, W. Kahl71, S. Kato72, A. T. Katramatou73, J. J. Kelly74, S. Kerhoas75, A. Ketikyan76, M. Khayat77, K. Kino78, S. Kox79, L. H. Kramer80, K. S. Kumar81, G. Kumbartzki82, M. Kuss83, A. Leone84, J. J. LeRose85, M. Liang86, R. A. Lindgren87, N. Liyanage88, G. J. Lolos89, R. W. Lourie90, R. Madey91, K. Maeda92, S. Malov93, D. M. Manley94, C. Marchand95, D. Marchand96, D. J. Margaziotis97, P. Markowitz98, J. Marroncle99, J. Martino100, K. McCormick101, J. McIntyre102, S. Mehrabyan103, F. Merchez104, Z. E. Meziani105, R. Michaels106, G. W. Miller107, J. Y. Mougey108, S. K. Nanda109, D. Neyret110, E. A. J. M. Offermann111, Z. Papandreou112, B. Pasquini113, C. F. Perdrisat114, R. Perrino115, G. G. Petratos116, S. Platchkov117, R. Pomatsalyuk118, D. L. Prout119, V. A. Punjabi120, T. Pussieux121, G. Quemener122, R. D. Ransome123, O. Ravel124, J. S. Real125, F. Renard126, Y. Roblin127, D. Rowntree128, G. Rutledge129, P. M. Rutt130, A. Saha131, T. Saito132, A. J. Sarty133, A. Serdarevic134, T. Smith135, G. Smirnov136, K. Soldi137, P. Sorokin138, P. A. Souder139, R. Suleiman140, J. A. Templon141, T. Terasawa142, R. Tieulent143, E. Tomasi-Gustaffson144, H. Tsubota145, H. Ueno146, P. E. Ulmer147, G. M. Urciuoli148, M. Vanderhaeghen149, R. L. J. Van der Meer150, R. Van De Vyver151, P. Vernin152, B. Vlahovic153, H. Voskanyan154, E. Voutier155, J. W. Watson156, L. B. Weinstein157, K. Wijesooriya158, R. Wilson159, B. B. Wojtsekhowski160, D. G. Zainea161, W. -M. Zhang162, J. Zhao163, Z. -L. Zhou164
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration, 93The Jefferson Lab Hall A Collaboration, 94The Jefferson Lab Hall A Collaboration, 95The Jefferson Lab Hall A Collaboration, 96The Jefferson Lab Hall A Collaboration, 97The Jefferson Lab Hall A Collaboration, 98The Jefferson Lab Hall A Collaboration, 99The Jefferson Lab Hall A Collaboration, 100The Jefferson Lab Hall A Collaboration, 101The Jefferson Lab Hall A Collaboration, 102The Jefferson Lab Hall A Collaboration, 103The Jefferson Lab Hall A Collaboration, 104The Jefferson Lab Hall A Collaboration, 105The Jefferson Lab Hall A Collaboration, 106The Jefferson Lab Hall A Collaboration, 107The Jefferson Lab Hall A Collaboration, 108The Jefferson Lab Hall A Collaboration, 109The Jefferson Lab Hall A Collaboration, 110The Jefferson Lab Hall A Collaboration, 111The Jefferson Lab Hall A Collaboration, 112The Jefferson Lab Hall A Collaboration, 113The Jefferson Lab Hall A Collaboration, 114The Jefferson Lab Hall A Collaboration, 115The Jefferson Lab Hall A Collaboration, 116The Jefferson Lab Hall A Collaboration, 117The Jefferson Lab Hall A Collaboration, 118The Jefferson Lab Hall A Collaboration, 119The Jefferson Lab Hall A Collaboration, 120The Jefferson Lab Hall A Collaboration, 121The Jefferson Lab Hall A Collaboration, 122The Jefferson Lab Hall A Collaboration, 123The Jefferson Lab Hall A Collaboration, 124The Jefferson Lab Hall A Collaboration, 125The Jefferson Lab Hall A Collaboration, 126The Jefferson Lab Hall A Collaboration, 127The Jefferson Lab Hall A Collaboration, 128The Jefferson Lab Hall A Collaboration, 129The Jefferson Lab Hall A Collaboration, 130The Jefferson Lab Hall A Collaboration, 131The Jefferson Lab Hall A Collaboration, 132The Jefferson Lab Hall A Collaboration, 133The Jefferson Lab Hall A Collaboration, 134The Jefferson Lab Hall A Collaboration, 135The Jefferson Lab Hall A Collaboration, 136The Jefferson Lab Hall A Collaboration, 137The Jefferson Lab Hall A Collaboration, 138The Jefferson Lab Hall A Collaboration, 139The Jefferson Lab Hall A Collaboration, 140The Jefferson Lab Hall A Collaboration, 141The Jefferson Lab Hall A Collaboration, 142The Jefferson Lab Hall A Collaboration, 143The Jefferson Lab Hall A Collaboration, 144The Jefferson Lab Hall A Collaboration, 145The Jefferson Lab Hall A Collaboration, 146The Jefferson Lab Hall A Collaboration, 147The Jefferson Lab Hall A Collaboration, 148The Jefferson Lab Hall A Collaboration, 149The Jefferson Lab Hall A Collaboration, 150The Jefferson Lab Hall A Collaboration, 151The Jefferson Lab Hall A Collaboration, 152The Jefferson Lab Hall A Collaboration, 153The Jefferson Lab Hall A Collaboration, 154The Jefferson Lab Hall A Collaboration, 155The Jefferson Lab Hall A Collaboration, 156The Jefferson Lab Hall A Collaboration, 157The Jefferson Lab Hall A Collaboration, 158The Jefferson Lab Hall A Collaboration, 159The Jefferson Lab Hall A Collaboration, 160The Jefferson Lab Hall A Collaboration, 161The Jefferson Lab Hall A Collaboration, 162The Jefferson Lab Hall A Collaboration, 163The Jefferson Lab Hall A Collaboration, 164The Jefferson Lab Hall A Collaboration

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1. Read More

We present new data for the polarization observables of the final state proton in the $^{1}H(\vec{\gamma},\vec{p})\pi^{0}$ reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1. Read More

We present an updated extraction of the proton electromagnetic form factor ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the proton. An improved selection of the elastic events and reduced background contributions yielded a small systematic reduction in the ratio mu_p G_E/G_M compared to the original analysis. Read More

2011Feb
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration

Precise measurements of the proton electromagnetic form factor ratio $R = \mu_p G_E^p/G_M^p$ using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of $R$ with momentum transfer $Q^2$ for $Q^2 \gtrsim 1$ GeV$^2$, in strong disagreement with previous extractions of $R$ from cross section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab's Hall A measured $R$ at four $Q^2$ values in the range 3. Read More

The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Read More

2010Dec

Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, $G_{E}/G_{M}$, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic $H(\vec{e},e'\vec{p})$ reaction for three different beam energies at a fixed squared momentum transfer $Q^2 = 2. Read More

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. Read More

2010Aug
Authors: S. Riordan, S. Abrahamyan, B. Craver, A. Kelleher, A. Kolarkar, J. Miller, G. D. Cates, N. Liyanage, B. Wojtsekhowski, A. Acha, K. Allada, B. Anderson, K. A. Aniol, J. R. M. Annand, J. Arrington, T. Averett, A. Beck, M. Bellis, W. Boeglin, H. Breuer, J. R. Calarco, A. Camsonne, J. P. Chen, E. Chudakov, L. Coman, B. Crowe, F. Cusanno, D. Day, P. Degtyarenko, P. A. M. Dolph, C. Dutta, C. Ferdi, C. Fernandez-Ramirez, R. Feuerbach, L. M. Fraile, G. Franklin, S. Frullani, S. Fuchs, F. Garibaldi, N. Gevorgyan, R. Gilman, A. Glamazdin, J. Gomez, K. Grimm, J. O. Hansen, J. L. Herraiz, D. W. Higinbotham, R. Holmes, T. Holmstrom, D. Howell, C. W. deJager, X. Jiang, M. K. Jones, J. Katich, L. J. Kaufman, M. Khandaker, J. J. Kelly, D. Kiselev, W. Korsch, J. LeRose, R. Lindgren, P. Markowitz, D. J. Margaziotis, S. May-Tal Beck, S. Mayilyan, K. McCormick, Z. E. Meziani, R. Michaels, B. Moffit, S. Nanda, V. Nelyubin, T. Ngo, D. M. Nikolenko, B. Norum, L. Pentchev, C. F. Perdrisat, E. Piasetzky, R. Pomatsalyuk, D. Protopopescu, A. J. R. Puckett, V. A. Punjabi, X. Qian, Y. Qiang, B. Quinn, I. Rachek, R. D. Ransome, P. E. Reimer, B. Reitz, J. Roche, G. Ron, O. Rondon, G. Rosner, A. Saha, M. Sargsian, B. Sawatzky, J. Segal, M. Shabestari, A. Shahinyan, Yu. Shestakov, J. Singh, S. Sirca, P. Souder, S. Stepanyan, V. Stibunov, V. Sulkosky, S. Tajima, W. A. Tobias, J. M. Udias, G. M. Urciuoli, B. Vlahovic, H. Voskanyan, K. Wang, F. R. Wesselmann, J. R. Vignote, S. A. Wood, J. Wright, H. Yao, X. Zhu

The electric form factor of the neutron was determined from studies of the reaction He3(e,e'n)pp in quasi-elastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear polarization was oriented perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons that were registered in a large-solid-angle detector. Read More

2010May

Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6. Read More

High precision measurements of induced and transferred recoil proton polarization in d(polarized gamma, polarized p})n have been performed for photon energies of 277--357 MeV and theta_cm = 20 degrees -- 120 degrees. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used. Read More

The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. Read More

An experimental study of the 16O(e,e'K^+)16N_Lambda reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e'K^+)Lambda,Sigma_0 exclusive reactions and a precise calibration of the energy scale. Read More

Cross sections for the reaction ${^1}$H($e,e'\pi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2. Read More

The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Read More

An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Read More

There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at MIT-Bates, MAMI, and JLab. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations. Read More

The ratio of the proton elastic electromagnetic form factors, $G_{Ep}/G_{Mp}$, was obtained by measuring $P_{t}$ and $P_{\ell}$, the transverse and longitudinal recoil proton polarization components, respectively, for the elastic $\vec e p \to e\vec p$ ~reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV$^2$. Read More

The ratio of the proton's elastic electromagnetic form factors $G_{Ep}/G_{Mp}$ was obtained by measuring $P_{t}$ and $P_{\ell}$, the transverse and longitudinal recoil proton polarization, respectively. For the elastic reaction $\vec e p \to e\vec p$, $G_{Ep}/G_{Mp}$ is proportional to $P_t/P_{\ell}$. The simultaneous measurement of $P_{t}$ and $P_{\ell}$ in a polarimeter reduces systematic uncertainties. Read More

2001Nov
Affiliations: 1E99-007/Hall A collaboration, 2E99-007/Hall A collaboration, 3E99-007/Hall A collaboration, 4E99-007/Hall A collaboration, 5E99-007/Hall A collaboration, 6E99-007/Hall A collaboration, 7E99-007/Hall A collaboration

The ratio of the electric and magnetic form factors of the proton, GEp/GMp, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic $\vec ep \to e\vec p$ reaction. The new data presented in this article span the range 3. Read More

We measured the 12C(e,e'p) cross section as a function of missing energy in parallel kinematics for (q,w) = (970 MeV/c, 330 MeV) and (990 MeV/c, 475 MeV). At w=475 MeV, at the maximum of the quasielastic peak, there is a large continuum (E_m > 50 MeV) cross section extending out to the deepest missing energy measured, amounting to almost 50% of the measured cross section. The ratio of data to DWIA calculation is 0. Read More

The first measurements of the induced proton polarization, P_n, for the 12C (e,e'\vec{p}) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (\omega,q) \approx (294 MeV, 756 MeV/c) and sampled a recoil momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. Read More

The polarization observables in the elastic scattering of polarized deuterons on a polarized hydrogen target, with measurement of the recoil proton polarization, are considered. The observables are calculated in the one-neutron exchange approximation, for the special case of backward scattering ($\theta_{c.m. Read More