C. Darve - Fermilab

C. Darve
Are you C. Darve?

Claim your profile, edit publications, add additional information:

Contact Details

Name
C. Darve
Affiliation
Fermilab
City
Warrenville
Country
United States

Pubs By Year

Pub Categories

 
Physics - Accelerator Physics (7)
 
Physics - Instrumentation and Detectors (3)
 
High Energy Physics - Phenomenology (2)
 
High Energy Physics - Experiment (1)

Publications Authored By C. Darve

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

2012Sep
Affiliations: 1Fermilab, 2Fermilab, 3Fermilab, 4Fermilab, 5Fermilab, 6Fermilab, 7Fermilab, 8Fermilab

The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2. Read More

The low-beta magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10**34/cm**2s. Those systems are a contribution of the US-LHC Accelerator project. Read More

The low -\beta magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 10**34/cm**2s. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. Read More

2012Jul
Affiliations: 1CERN, 2CERN, 3CERN, 4Fermilab, 5CERN, 6CERN, 7CERN, 8Fermilab, 9CERN, 10CERN, 11CERN

The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. Read More

2012Feb
Affiliations: 1Fermilab, 2Fermilab, 3Fermilab, 4Fermilab, 5Fermilab, 6Fermilab, 7Fermilab, 8Fermilab, 9Fermilab, 10Fermilab, 11Fermilab, 12Fermilab, 13Fermilab, 14Fermilab, 15Fermilab, 16Fermilab, 17Fermilab, 18Fermilab, 19Fermilab, 20Fermilab, 21Fermilab

In the recently commissioned superconducting RF cavity test facility at Fermilab (SCTF), a 325 MHz, {\beta}=0.22 superconducting single-spoke resonator (SSR1) has been tested for the first time with its input power coupler. Previously, this cavity had been tested CW with a low power, high Qext test coupler; first as a bare cavity in the Fermilab Vertical Test Stand and then fully dressed in the SCTF. Read More

2001Aug
Affiliations: 1IIT, 2IIT, 3IIT, 4FNAL, 5FNAL, 6KEK, 7KEK, 8NIU, 9NIU, 10NIU, 11NIU, 12NIU, 13NU, 14Osaka, 15UIUC, 16UIUC, 17Mississippi, 18Mississippi, 19Mississippi

A program is underway to develop liquid-hydrogen energy absorbers for ionization cooling of muon-beam transverse emittance. Minimization of multiple-scattering-induced beam heating requires thin windows. The first window prototype has been destructively tested, validating the finite-element-analysis model and the design approach. Read More

2001Aug
Affiliations: 1IIT, 2IIT, 3IIT, 4IIT, 5IIT, 6FNAL, 7FNAL, 8FNAL, 9KEK, 10KEK, 11NIU, 12NIU, 13NIU, 14NIU, 15NIU, 16NU, 17Osaka, 18UIUC, 19UIUC, 20UIUC, 21Mississippi, 22Mississippi

A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups. Read More