Brian D. Metzger - Columbia

Brian D. Metzger
Are you Brian D. Metzger?

Claim your profile, edit publications, add additional information:

Contact Details

Brian D. Metzger

Pubs By Year

External Links

Pub Categories

High Energy Astrophysical Phenomena (47)
Solar and Stellar Astrophysics (16)
General Relativity and Quantum Cosmology (10)
Nuclear Theory (6)
Cosmology and Nongalactic Astrophysics (5)
Astrophysics of Galaxies (4)
Earth and Planetary Astrophysics (3)
High Energy Physics - Phenomenology (1)

Publications Authored By Brian D. Metzger

The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for gamma-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. Read More

Luminous red novae (LRN) are a class of optical transients believed to originate from the mergers of binary stars, or "common envelope" events. Their light curves often show secondary maxima, which cannot be explained in the previous models of thermal energy diffusion or hydrogen recombination without invoking multiple independent shell ejections. We propose that double-peaked light curves are a natural consequence of a collision between dynamically-ejected fast shell and pre-existing equatorially-focused material, which was shed from the binary over many orbits preceding the dynamical event. Read More

Multiple observational lines of evidence support a connection between hydrogen-poor superluminous supernovae (SLSNe) and long duration gamma-ray bursts (GRBs). Both events require a powerful central energy source, usually attributed to a millisecond magnetar or an accreting black hole. The GRB-SLSN link raises several theoretical questions: What distinguishes the engines responsible for these different phenomena? Can a single engine power both a GRB and a luminous SN in the same event? We propose a new unifying model for magnetar thermalization and jet formation: misalignment between the rotation (${\bf \Omega}$) and magnetic dipole (${\bf \mu}$) axes thermalizes a fraction of the spindown power by reconnection in the striped equatorial wind, providing a guaranteed source of "thermal" emission to power the supernova. Read More

When a main sequence star undergoes Roche lobe overflow onto a supermassive black hole (SMBH) in a circular extreme mass ratio inspiral (EMRI), a phase of steady mass transfer ensues. Over millions of years, the binary evolves to a period minimum before reversing course and migrating outwards. Because the time interval between consecutive EMRIs is comparable to the mass-transfer timescale, the semi-major axes of two consecutive mass-transferring EMRIs will cross on a radial scale < few AU. Read More

We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion disks formed in neutron star mergers. We compute the element formation in disk outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disk evolution. We employ long-term axisymmetric hydrodynamic disk simulations to model the ejecta, and compute r-process nucleosynthesis with tracer particles using a nuclear reaction network containing $\sim 8000$ species. Read More

It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst, but the mechanics of this gamma-ray emission are still not well understood. We present here a comprehensive, multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a bulk ejecta velocity of $1150 \pm 40~\rm km~s^{-1}$ and an ejecta mass of $2. Read More

We explore heavy element nucleosynthesis in neutrino-driven winds from rapidly-rotating, strongly magnetized proto-neutron stars for which the magnetic dipole is aligned with the rotation axis, and the field is assumed to be a static force-free configuration. We process the proto-magnetar wind trajectories calculated by Vlasov et al 2014 through the r-process nuclear reaction network SkyNet using contemporary models for the evolution of the wind electron fraction during the proto-neutron star cooling phase. Although we do not find a successful second or third peak r-process for any rotation period P, we show that proto-magnetars with P around 1-5 ms produce heavy element abundance distributions that extend to higher nuclear mass number than from otherwise equivalent spherical winds (with the mass fractions of some elements enhanced by factors of 100-1000). Read More

Sub-arcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (`quiescent') non-thermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly-formed, strongly-magnetized neutron stars with millisecond birth rotation periods (`millisecond magnetars'). Read More

The Kepler-field star KIC 8462852, an otherwise apparently ordinary F3 main-sequence star, showed several highly unusual dimming events of variable depth and duration. Adding to the mystery was the discovery that KIC 8462852 faded by 14% from 1890 to 1989, as well as by another 3% over the 4 year Kepler mission. Following an initial suggestion by Wright & Sigurdsson, we propose that the secular dimming behavior is the result of the inspiral of a planetary body or bodies into KIC 8462852, which took place ~10 to 1e4 years ago (depending on the planet mass). Read More

Multiwavelength radiation from relativistic particles accelerated at shocks in novae and other astrophysical sources carries a wealth of information about the outflow properties and the microphysical processes at work near the shocks. The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the shocks in these systems can accelerate particles to energies of at least $\sim 10$ GeV. The low-energy extension of the same non-thermal particle distribution inevitably gives rise to emission extending into the X-ray band. Read More

The mergers of double neutron star (NS-NS) and black hole (BH)-NS binaries are promising gravitational wave (GW) sources for Advanced LIGO and future GW detectors. The neutron-rich ejecta from such merger events undergoes rapid neutron capture (r-process) nucleosynthesis, enriching our Galaxy with rare heavy elements like gold and platinum. The radioactive decay of these unstable nuclei also powers a rapidly evolving, supernova-like transient known as a "kilonova". Read More

Classical novae commonly show evidence of rapid dust formation within months of the outburst. However, it is unclear how molecules and grains are able to condense within the ejecta given the potentially harsh environment created by ionizing radiation from the white dwarf. Motivated by the evidence for powerful radiative shocks within nova outflows, we propose that dust formation occurs within the cool, dense shell behind these shocks. Read More

We show that the merger and tidal disruption of a C/O white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disk produced of the disrupted WD, we model its long term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disk opacity. For plausible values of the disk viscosity $\alpha \sim 10^{-3}-10^{-2}$ and the RIAF mass loss efficiency, we find that the disk mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Read More

We consider $r$-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star -- black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. Read More

Affiliations: 1Einstein Fellow, University of Arizona, 2Columbia, 3Harvard, 4University of Arizona

The merger of a neutron star binary may result in the formation of a rapidly-spinning magnetar. The magnetar can potentially survive for seconds or longer as a supramassive neutron star before collapsing to a black hole if, indeed, it collapses at all. During this process, a fraction of the magnetar's rotational energy of ~10^53 erg is transferred via magnetic spin-down to the surrounding ejecta. Read More

Rapidly rotating, strongly magnetized neutron stars (magnetars) can release their enormous rotational energy via magnetic spin-down, providing a power source for bright transients such as superluminous supernovae. On the other hand, particularly massive (so-called supramassive) neutron stars require a minimum rotation rate to support their mass against gravitational collapse, below which the neutron star collapses to a black hole. We model the light curves of supernovae powered by magnetars which transform into black holes. Read More

If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the NSs. If a modest fraction, eta, of the extracted electromagnetic power extracted accelerates relativistic particles, the resulting gamma-ray emission a compact volume will result in the formation of an electron-positron pair fireball. Applying a steady-state pair wind model, we quantify the detectability of the precursor fireball with gamma-ray satellites. Read More

We study mass loss from the outer Lagrange point (L2) in binary stellar mergers and their luminous transients by means of radiative hydrodynamical simulations. Previously, we showed that for binary mass ratios 0.06 < q < 0. Read More

We construct time-dependent one-dimensional (vertically averaged) models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disk midplane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disk dynamics. A model for disk outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the midplane to a fixed value $\lesssim 0$. Read More

The discovery of GeV gamma-rays from classical novae indicates that shocks and relativistic particle acceleration are energetically key in these events. Further evidence for shocks comes from thermal keV X-ray emission and an early peak in the radio light curve on a timescale of months with a brightness temperature which is too high to result from freely expanding photo-ionized gas. Paper I developed a one dimensional model for the thermal emission from nova shocks. Read More

We explore the evolution of stellar mass black hole binaries (BHBs) which are formed in the self-gravitating disks of active galactic nuclei (AGN). Hardening due to three-body scattering and gaseous drag are effective mechanisms that reduce the semi-major axis of a BHB to radii where gravitational waves take over, on timescales shorter than the typical lifetime of the AGN disk. Taking observationally-motivated assumptions for the rate of star formation in AGN disks, we find a rate of disk-induced BHB mergers ($\mathcal{R} \sim 3~{\rm yr}^{-1}~{\rm Gpc}^{-3}$, but with large uncertainties) that is comparable with existing estimates of the field rate of BHB mergers, and the approximate BHB merger rate implied by the recent Advanced LIGO detection of GW150914. Read More

The mergers of binaries containing neutron stars and stellar-mass black holes are the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. Here we review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. Read More

The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly-launched jet. Read More

The discovery of novae as sources of ~GeV gamma-rays highlights the key role of shocks and relativistic particle acceleration in these transient systems. Although there is evidence for a spectral cut-off above energies ~1-100 GeV at particular epochs in some novae, the maximum particle energy achieved in these accelerators has remained an open question. The high densities of the nova ejecta (~10 orders of magnitude larger than in supernova remnants) render the gas far upstream of the shock neutral and shielded from ionizing radiation. Read More

We report here on key science topics for the Next Generation Very Large Array in the areas of time domain, fundamental physics, and cosmology. Key science cases considered are pulsars in orbit around the Galactic Center massive black hole, Sagittarius A*, electromagnetic counterparts to gravitational waves, and astrometric cosmology. These areas all have the potential for ground-breaking and transformative discovery. Read More

Affiliations: 1Ferrara U. & INFN, Ferrara, 2Turin Polytechnic & INFN, Turin, 3Columbia U., Astron. Astrophys, 4Ferrara U. & INFN, Ferrara

We propose a model for short duration gamma-ray bursts (sGRBs) based on the formation of a quark star after the merger of two neutron stars. We assume that the sGRB central engine is a proto-magnetar, which has been previously invoked to explain the plateau-like X-ray emission observed following both long and short GRBs. Here, we show that: i) a few milliseconds after the merger it is possible to form a stable and massive star made in part of quarks; ii) during the early cooling phase of the incompletely formed quark star, the flux of baryons ablated from the surface by neutrinos is large and it does not allow the outflow to achieve a bulk Lorentz factor high enough to produce a GRB; iii) after the quark burning front reaches the stellar surface, baryon ablation ceases and the jet becomes too baryon poor to produce a GRB; iv) however, between these two phases a GRB can be produced over the finite timescale required for the baryon pollution to cease; a characteristic timescale of the order of $\sim 0. Read More

We study transients produced by equatorial disk-like outflows from catastrophically mass-losing binary stars with an asymptotic velocity and energy deposition rate near the inner edge which are proportional to the binary escape velocity v_esc. As a test case, we present the first smoothed-particle radiation-hydrodynamics calculations of the mass loss from the outer Lagrange point with realistic equation of state and opacities. The resulting spiral stream becomes unbound for binary mass ratios 0. Read More

Strongly-magnetized, rapidly-rotating neutron stars are contenders for the central engines of both long-duration gamma-ray bursts (LGRBs) and hydrogen-poor super-luminous supernovae (SLSNe-I). Models for typical (~minute long) LGRBs invoke magnetars with high dipole magnetic fields (Bd > 1e15 G) and short spin-down times, while models for SLSNe-I invoke neutron stars with weaker fields and longer spin-down times of weeks. Here we identify a transition region in the space of Bd and birth period for which a magnetar can power both a long GRB and a luminous SN. Read More

The light curves of some luminous supernovae are suspected to be powered by the spindown energy of a rapidly rotating magnetar. Here we describe a possible signature of the central engine: a burst of shock breakout emission occurring several days after the supernova explosion. The energy input from the magnetar inflates a high-pressure bubble that drives a shock through the pre-exploded supernova ejecta. Read More

When a star is tidally disrupted by a supermassive black hole (BH), roughly half of its mass falls back to the BH at super-Eddington rates. Being tenuously gravitationally bound and unable to cool radiatively, only a small fraction f_in << 1 of the returning debris will likely be incorporated into the disk and accrete, with the vast majority instead becoming unbound in an outflow of velocity ~1e4 km/s. This slow outflow spreads laterally, encasing the BH. Read More

The importance of shocks in nova explosions has been highlighted by Fermi's discovery of \gamma-ray producing novae. Over three years of multi-band VLA radio observations of the 2010 nova V1723 Aql show that shocks between fast and slow flows within the ejecta led to the acceleration of particles and the production of synchrotron radiation. Soon after the start of the eruption, shocks in the ejecta produced an unexpected radio flare, resulting in a multi-peaked radio light curve. Read More

One possible channel for black hole formation is the collapse of a rigidly rotating massive neutron star as it loses its angular momentum or gains excessive mass through accretion. It was proposed that part of the neutron star may form a debris disk around the black hole. Such short-lived massive disks could be the sources of powerful jets emitting cosmological gamma-ray bursts. Read More

We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting ("quiescent") galactic nuclei for a range of central black hole masses $M_{\bullet}$, parametrized gas heating rates, and observationally-motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the large scale gas inflow rate, $\dot{M}$, as a function of $M_{\bullet}$ and the gas heating efficiency, the latter being related to the star-formation history. Read More

The impending era of wide-field radio surveys has the potential to revolutionize our understanding of astrophysical transients. Here we evaluate the prospects of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g. Read More

The Fermi LAT discovery that classical novae produce >100 MeV gamma-rays establishes that shocks and relativistic particle acceleration are key features of these events. These shocks are likely to be radiative due to the high densities of the nova ejecta at early times coincident with the gamma-ray emission. Thermal X-rays radiated behind the shock are absorbed by neutral gas and reprocessed into optical emission, similar to Type IIn (interacting) supernovae. Read More

We study the radioactively-powered transients produced by accretion disk winds following a compact object merger. Starting with the outflows generated in two-dimensional hydrodynamical disk models, we use wavelength-dependent radiative transfer calculations to generate synthetic light curves and spectra. We show that the brightness and color of the resulting kilonova transients carry information about the merger physics. Read More

Rates of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs) due to two-body relaxation are calculated using a large galaxy sample (N=146) in order to explore the sensitivity of the TDE rates to observational uncertainties, such as the parametrization of galaxy light profiles and the stellar mass function. The largest uncertainty arises due to the poorly constrained occupation fraction of SMBHs in low-mass galaxies, which otherwise dominate the total TDE rate. The detection rate of TDE flares by optical surveys is calculated as a function of SMBH mass and other observables for several physically-motivated models of TDE emission. Read More

The accretion disk that forms after a neutron star merger is a source of neutron-rich ejecta. The ejected material contributes to a radioactively-powered electromagnetic transient, with properties that depend sensitively on the composition of the outflow. Here we investigate how the spin of the black hole remnant influences mass ejection on the thermal and viscous timescales. Read More

The merger of binary neutron stars (NSs) ejects a small quantity of neutron rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ~1e-4 Msun) expands sufficiently rapidly for most neutrons to avoid capture. Read More

We calculate the steady-state properties of neutrino-driven winds from strongly magnetized, rotating proto-neutron stars (`proto-magnetars') under the assumption that the outflow geometry is set by the force-free magnetic field of an aligned dipole. Our goal is to assess proto-magnetars as sites of r-process nucleosynthesis and gamma-ray burst engines. One dimensional solutions calculated along flux tubes corresponding to different polar field lines are stitched together to determine the global properties of the flow at a given neutrino luminosity and rotation period. Read More

Several lines of observational evidence suggest that white dwarfs receive small birth kicks due to anisotropic mass loss. If other stars possess extrasolar analogues to the Solar Oort cloud, the orbits of comets in such clouds will be scrambled by white dwarf natal kicks. Although most comets will be unbound, some will be placed on low angular momentum orbits vulnerable to sublimation or tidal disruption. Read More

Evidence for shocks in nova outflows include (1) multiple velocity components in the optical spectra; (2) keV X-ray emission weeks to months after the outburst; (3) early radio flare on timescales of months, in excess of that predicted from the freely expanding photo-ionized gas; and (4) ~ GeV gamma-rays. We present a 1D model for the shock interaction between the fast nova outflow and a dense external shell (DES) and its associated thermal X-ray, optical, and radio emission. The forward shock is radiative initially when the density of shocked gas is highest, at which times radio emission originates from the dense cooling layer immediately downstream of the shock. Read More

Mergers of binary neutron stars (NSs) usually result in the formation of a hypermassive neutron star (HMNS). Whether- and when this remnant collapses to a black hole (BH) depends primarily on the equation of state and on angular momentum transport processes, both of which are uncertain. Here we show that the lifetime of the merger remnant may be directly imprinted in the radioactively powered kilonova emission following the merger. Read More

The coalescence of binary neutron stars (NSs) may in some cases produce a stable massive NS remnant rather than a black hole. Due to the substantial angular momentum from the binary, such a remnant is born rapidly rotating and likely acquires a strong magnetic field (a `millisecond magnetar'). Magnetic spin-down deposits a large fraction of the rotational energy from the magnetar behind the small quantity of mass ejected during the merger. Read More

The coalescence of a binary neutron star (NS) system may in some cases produce a massive NS remnant that is long-lived and, potentially, indefinitely stable to gravitational collapse. Such a remnant has been proposed as an explanation for the late X-ray emission observed following some short duration gamma-ray bursts (GRBs) and as possible electromagnetic counterparts to the gravitational wave chirp. A stable NS merger remnant necessarily possesses a large rotational energy > 1e52 erg, the majority of which is ultimately deposited into the surrounding circumburst medium (CBM) at mildly relativistic velocities. Read More

The origin of rapid neutron capture (r-process) nuclei remains one of the longest standing mysteries in nuclear astrophysics. Core collapse supernovae (SNe) and neutron star binary mergers are likely r-process sites, but little evidence yet exists for their in situ formation in such environments. Motivated by the advent of sensitive new or planned X-ray telescopes such as the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Large Observatory for X-ray Timing (LOFT), we revisit the prospects for the detection of X-ray decay lines from r-process nuclei in young or nearby supernova remnants. Read More

We present radio, optical/NIR, and X-ray observations of the afterglow of the short-duration 130603B, and uncover a break in the radio and optical bands at 0.5 d after the burst, best explained as a jet break with an inferred jet opening angle of 4-8 deg. GRB 130603B is only the third short GRB with a radio afterglow detection to date, and the first time that a jet break is evident in the radio band. Read More

Magnetic spin-down of a millisecond neutron star has been proposed as the power source of hydrogen-poor "superluminous" supernovae (SLSNe-I). However, producing an unambiguous test that can distinguish this model from alternatives, such as circumstellar interaction, has proven challenging. After the supernova explosion, the pulsar wind inflates a hot cavity behind the expanding stellar ejecta: the nascent millisecond pulsar wind nebula. Read More

Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Read More

The unusual transient Swift J1644+57 likely resulted from a collimated relativistic jet powered by accretion onto a massive black hole (BH) following the tidal disruption (TD) of a star. Several mysteries cloud the interpretation of this event: (1) extreme flaring and `plateau' shape of the X-ray/gamma-ray light curve during the first 10 days after the gamma-ray trigger; (2) unexpected rebrightening of the forward shock radio emission months after trigger; (3) no obvious evidence for jet precession, despite misalignment typically expected between the angular momentum of the accretion disk and BH; (4) recent abrupt shut-off in jet X-ray emission after 1.5 years. Read More